首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用平面波展开法对GaN/AlxGa1-xN球形量子点中类氢杂质态能级随量子点半径、Al组分以及结合能随Al组分的变化规律进行了详细讨论.计算了量子点内外有效质量差异对杂质态能级和结合能的修正,结果表明对于Al组分较高的GaN/AlxGa1-xN球形量子点,电子有效质量差异对杂质能级和结合能的修正不能忽略.考虑电子有效质量差异后,进一步具体计算了杂质结合能随量子点半 关键词: 球形量子点 平面波展开法 有效质量  相似文献   

2.
Numerical calculations of the excitonic absorption spectra in a strained CdxZn1−xO/ZnO quantum dot are investigated for various Cd contents. We calculate the quantized energies of the exciton as a function of dot radius for various confinement potentials and thereby the interband emission energy is computed considering the internal electric field induced by the spontaneous and piezoelectric polarizations. The optical absorption as a function of photon energy for different dot radii is discussed. Decrease of exciton binding energy and the corresponding optical band gap with the Cd concentration imply that the confinement of carriers decreases with composition x. The main results show that the confined energies and the transition energies between the excited levels are significant for smaller dots. Non-linearity band gap with the increase in Cd content is observed for smaller dots in the strong confinement region and the magnitude of the absorption spectra increases for the transitions between the higher excited levels.  相似文献   

3.
In the framework of perturbation theory, a variational method is used to study the ground state of a donor bound exciton in a weakly prolate GaAs/Ga1−xAlxAs ellipsoidal finite-potential quantum dot under hydrostatic pressure. The analytic expressions for the Hamiltonian of the system have been obtained and the binding energy of the bound exciton is calculated. The results show that the binding energy decreases as the symmetry of the dot shape reduces. The pressure and Al concentration have a considerable influence on the bound exciton. The binding energy increases monotonically as the pressure or Al concentration increases, and the influence of pressure or Al concentration is more pronounced for small quantum dot size.  相似文献   

4.
蔡承宇  周旺民 《物理学报》2007,56(8):4841-4846
基于各向异性弹性理论的有限元方法,研究了金字塔形自组织Ge/Si半导体量子点应变能随高宽比变化的规律:系统的应变能随着高宽比的增大而逐渐减小.并通过自由能(应变能与表面能之和)讨论了量子点的平衡形态.结果表明,对于固定体积的量子点,存在一个高宽比值,称之为平衡高宽比,使得系统的自由能最低.同时,还给出了量子点的应力、应变、流体静应变及双轴应变分布.这些可以作为阐明应变自组织量子点实验的理论基础. 关键词: 量子点 应变分布 自由能 平衡形态  相似文献   

5.
The crystal structure of new self-assembled InSb/AlAs and AlSb/AlAs quantum dots grown by molecularbeam epitaxy has been investigated by transmission electron microscopy. The theoretical calculations of the energy spectrum of the quantum dots have been supplemented by the experimental data on the steady-state and time-resolved photoluminescence spectroscopy. Deposition of 1.5 ML of InSb or AlSb on the AlAs surface carried out in the regime of atomic-layer epitaxy leads to the formation of pseudomorphically strained quantum dots composed of InAlSbAs and AlSbAs alloys, respectively. The quantum dots can have the type-I and type-II energy spectra depending on the composition of the alloy. The ground hole state in the quantum dot belongs to the heavy-hole band and the localization energy of holes is much higher than that of electrons. The ground electron state in the type-I quantum dots belongs to the indirect XXY valley of the conduction band of the alloy. The ground electron state in the type-II quantum dots belongs to the indirect X valley of the conduction band of the AlAs matrix.  相似文献   

6.
L. Shi  Z.W. Yan   《Physics letters. A》2009,373(38):3490-3494
A variational method is used to study the ground state of a bound polaron in a weakly oblate wurtzite GaN/AlxGa1 − xN ellipsoidal quantum dot. The binding energy of the bound polaron is calculated by taking the electron couples with both branches of LO-like and TO-like phonons due to the anisotropic effect into account. The interaction between impurity and phonons has also been considered to obtain the binding energy of a bound polaron. The results show that the binding energy of bound polaron reaches a peak value as the quantum dot radius increases and then diminishes for the finite potential well. We found that the binding energy of bound polaron is reduced by the phonons effect on the impurity states, the contribution of LO-like phonon to the binding energy is dominant, the anisotropic angle and ellipticity influence on the binding energy are small.  相似文献   

7.
Raman scattering by optical phonons in InxGa1 ? x As/AlAs nanostructures with quantum dots has been studied experimentally for compositions corresponding to x = 0.3?1 under out-resonance conditions. Features due to scattering by GaAs-and InAs-like optical phonons in quantum dots have been detected, and the phonon frequencies have been determined as a function of the dot composition. With increasing excitation energy, a red shift is observed in the frequency of the GaAs-like phonon in quantum dots, which testifies to Raman scattering selective by the size of quantum dots. Under resonant conditions, multiphonon light scattering by optical and interface phonons is observed up to the third order, including overtones of the first-order phonons of InGaAs and AlAs materials and their combinations.  相似文献   

8.
The optical properties of InAs/AlyGa1−yAs self-assembled quantum dots are studied as a function of temperature from 10 K to room temperature. The temperature dependence of carrier hopping between dots is discussed in terms of the depth of the dot confinement potential and the dispersion in dot size and composition. We show that carrier hopping between dots influences both the electrical and optical properties of laser devices having dots as active medium.  相似文献   

9.
Numerical calculations of the excitonic absorption spectra in a strained CdxZn1?xO/ZnO quantum dot are investigated for various Cd contents. We calculate the quantized energies of the exciton as a function of dot radius for various confinement potentials and thereby the interband emission energy is computed considering the internal electric field induced by the spontaneous and piezoelectric polarizations. The optical absorption as a function of photon energy for different dot radii is discussed. Decrease of exciton binding energy and the corresponding optical band gap with the Cd concentration imply that the confinement of carriers decreases with composition x. The main results show that the confined energies and the transition energies between the excited levels are significant for smaller dots. Non-linearity band gap with the increase in Cd content is observed for smaller dots in the strong confinement region and the magnitude of the absorption spectra increases for the transitions between the higher excited levels.  相似文献   

10.
This article deals with the strain distributions around GaN/AlN quantum dots by using the finite element method. Special attention is paid to the influence of Al0.2Ga0.8N strain-reducing layer on strain distribution and electronic structure. The numerical results show that the horizontal and the vertical strain components are reinforced in the GaN quantum dot due to the presence of the strain-reducing layer, but the hydrostatic strain in the quantum dot is not influenced. According to the deformation potential theory, we study the band edge modifications and the piezoelectric effects. The result demonstrates that with the increase of the strain reducing layer, the transition energy between the ground state electron and the heavy hole increases. This result is consistent with the emission wavelength blue shift phenomenon observed in the experiment and confirms that the wavelength shifts toward the short wavelength range is realizable by adjusting the structure-dependent parameters of GaN/AlN quantum dot.  相似文献   

11.
Resonant optical pumping across the band gap was used as artificial doping in InAs/In0.15Ga0.85As/GaAs quantum dots-in-a-well infrared photodetectors. Through efficient filling of the quantum dot energy levels by simultaneous optical pumping into the ground states and the excited states of the quantum dots, the response was increased by a factor of 10. Low temperature photocurrent peaks observed at 120 and 148 meV were identified as intersubband transitions emanating from the quantum dot ground state and the quantum dot excited state, respectively by a selective increase of the electron population in the different quantum dot energy levels.  相似文献   

12.
Based on the effective-mass approximation, the donor binding energy in a cylindrical zinc-blende (ZB) symmetric InGaN/GaN coupled quantum dots (QDs) is investigated variationally in the presence of an applied electric field. Numerical results show that the ground-state donor binding energy is highly dependent on the impurity positions, coupled QDs structure parameters and applied electric field. The applied electric field induces an asymmetric distribution of the donor binding energy with respect to the center of the coupled QDs. When the impurity is located at the center of the right dot, the donor binding energy has a maximum value with increasing the dot height. Moreover, the donor binding energy is the largest and insensitive to the large applied electric field (F?400 kV/cm) when the impurity is located at the center of the right dot in ZB symmetric In0.1Ga0.9N/GaN coupled QDs. In addition, if the impurity is located inside the right dot, the donor binding energy is insensitive to large middle barrier width (Lmb?2.5 nm) of ZB symmetric In0.1Ga0.9N/GaN coupled QDs.  相似文献   

13.
The effect of longitudinal optical phonon field on the ground state and low lying-excited state energies of a hydrogenic impurity in a Zn1−xCdxSe/ZnSe strained quantum dot is investigated for various Cd content using the Aldrich-Bajaj effective potential. We consider the strain effect considering the internal electric field induced by the spontaneous and piezoelectric polarizations. Calculations have been performed using Bessel function as an orthonormal basis for different confinement potentials of barrier height. Polaron induced photoionization cross section of the hydrogenic impurity in the quantum dot is investigated. We study the oscillator strengths, the linear and third-order nonlinear optical absorption coefficients as a function of incident photon energy for 1s-1p and 1p-1d transitions with and without the polaronic effect. It is observed that the potential taking into account the effects of phonon makes the binding energies more than the obtained results using a Coulomb potential screened by a static dielectric constant and the optical properties of hydrogenic impurity in a quantum dot are strongly affected by the confining potential and the radii. It is also observed that the magnitude of the absorption coefficients increases for the transitions between higher levels with the inclusion of phonon effect.  相似文献   

14.
《Physics Reports》1997,286(6):349-374
We present a comprehensive investigation of non-equilibrium effects and self-heating in single electron transfer devices based primarily on the Coulomb blockade effect. During an electron trapping process, a hot electron maybe deposited in a quantum dot or metal island, with an extra energy usually of the order of the Coulomb charging energy, which is much higher than the temperature in typical experiments. The hot electron may relax through three channels: tunneling back and forth to the feeding lead (or island), emitting phonons, and exciting background electrons. Depending on the magnitudes of the rates in the latter two channels relative to the device operation frequency and to each other, the system may be in one of three different regimes: equilibrium, non-equilibrium, and self-heating (partial equilibrium). In the equilibrium regime, a hot electron fully gives up its energy to phonons within a pump cycle. In the non-equilibrium regime, the relaxation is via tunneling with a distribution of characteristic rates; the approach to equilibrium goes like a power law of time (frequency) instead of an exponential. This channel is plagued completely in the continuum limit of the single-electron levels. In the self-heating regime, the hot electron thermalizes quickly with background electrons, whose temperature Te is elevated above the lattice temperature Tol. We have calculated the coefficient in the well-known T5 law of energy dissipation rate, and compared the results to experimental values for aluminum and copper islands and for a two-dimensional semiconductor quantum dot. Moreover, we have obtained different scaling relations between the electron temperature, the operation frequency and device size for various types of devices.  相似文献   

15.
Based on the framework of effective-mass approximation and variational approach, optical properties of exciton are investigated theoretically in ZnO/MgxZn1−xO vertically coupled quantum dots (QDs), with considering the three-dimensional confinement of electron and hole pair and the strong built-in electric field effects due to the piezoelectricity and spontaneous polarization. The exciton binding energy, the emission wavelength and the oscillator strength as functions of the different structural parameters (the dot height and the barrier thickness between the coupled wurtzite ZnO QDs) are calculated with the built-in electric field in detail. The results elucidate that structural parameters have a significant influence on the exciton state and optical properties of ZnO coupled QDs. These results show the optical and electronic properties of the quantum dot that can be controlled and also tuned through the nanoparticle size variation.  相似文献   

16.
A CaF2/Ge/CaF2/Si(111) heteroepitaxial structure with Ge quantum dots was grown by molecular-beam epitaxy. A negative differential conductivity and conductivity oscillations caused by resonant hole tunneling were observed at room temperature. The energy spacing between the levels in quantum dots, as determined from the oscillation period, is 40–50 meV depending on the Ge dot size.  相似文献   

17.
透镜型量子点中类氢杂质基态能的计算   总被引:1,自引:0,他引:1       下载免费PDF全文
通过有效质量近似和变分法,研究了垂直磁场下透镜型量子点中类氢杂质基态能量,并与球型量子点进行了比较.研究表明:对于球型量子点,基态能仅与杂质的偏离距离有关,与垂直和水平偏离无关;而对于透镜型量子点,由于水平方向和垂直方向束缚势的非对称性,电子基态能不仅与杂质的偏离距离有关,还与杂质偏离方向有关. 关键词: 透镜型量子点 基态能 变分法  相似文献   

18.
Luminescent nanocrystalline Si dots were fabricated directly on thermally grown SiO2 at 120°C by conventional RF plasma-enhanced chemical vapor deposition using tetrachlorosilane, SiCl4 and H2. As-deposited Si dot exhibits photoluminescence (PL) in the visible region, consisting of two broad bands corresponding to photon energies of 1.38 and 1.48 eV. Storage in air enhances PL and shifts the PL peak energy to higher wavelengths for dots of diameter less than 10 nm. Fourier transform attenuated total reflection absorption spectroscopy (FTIR-ATR) study reveals that the spontaneous oxidation proceeds until saturation after 70 h at dot sizes of 3–5 nm. The relationship between PL intensity, blueshift of PL peak energy, and surface termination species during oxidation indicates that these changes are attributed to the increased density of radiative centers at the Si nanocrystal dot/SiO2 interface and enhancement of the quantum confinement effect.  相似文献   

19.
In the tight binding approximation, the spatial configuration of the ground state and the binding energy of a hole in a “diatomic” artificial molecule formed by vertically coupled Ge/Si(001) quantum dots are studied. The inhomogeneous spatial distribution of elastic strain arising in the medium due to the lattice mismatch between Ge and Si is taken into account. The strain is calculated using the valence-force-field model with a Keating interatomic potential. The formation of the hole states is shown to be determined by the competition of two processes: the appearance of a common hole due to the overlapping of “atomic” wavefunctions and the appearance of asymmetry in the potential energy of a hole in the two quantum dots because of the superposition of the elastic strain fields from the vertically aligned Ge nanoclusters. When the thickness of the Si layer separating the Ge dots (t Si) is greater than 2.3 nm, the binding energy of a hole in the ground state of the two-dot system proves to be lower than the ionization energy of a single quantum dot because of the partial elastic stress relaxation due to the coupling of the quantum dots and due to the decrease in the depth of the potential well for holes. For the values of the parameter t Si, an intermediate region is revealed, where the covalent molecular bond fails and the hole is localized in one of the two quantum dots, namely, in the dot characterized by the highest strain values.  相似文献   

20.
Single self-assembled InAs quantum dots embedded in a In0.12Ga0.88As quantum well and emitting in the near infrared have been optically investigated. The dependence on the excitation power of the single quantum dot photoluminescence has been used to identify the emission of the biexciton complex. The biexciton binding energy, which has been measured for a dozen dots, increases with increasing exciton transition energy for the dot sizes investigated in the present work, as a consequence of stronger confinement in a smaller quantum dot. The obtained data is compared with experimental results available in the literature for InAs quantum dots. PACS 78.67.Hc; 73.21.La; 78.55.Cr  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号