首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aims to clarify the effect of fuel ratio of coal on the turbulent flame speed of ammonia/coal particle cloud co-combustion at atmospheric pressure under various turbulence intensities. High-fuel-ratio coals are not usually used in coal-fired thermal power plants because of their low flame stability. The expectation is that ammonia as a hydrogen-energy carrier would improve the ignition capability of coal particles in co-combustion. Experiments on spherical turbulent flame propagation of co-combustion were conducted for various coal types under various turbulence intensities, using the unique experimental apparatus developed for the co-combustion. Experimental results show that the flame speed of co-combustion with a low equivalence ratio of ammonia/oxidizer mixture for bituminous coal case was found to be three times faster than that of pure coal combustion and two times faster than that of pure ammonia combustion. On the other hand, the flame speed of co-combustion for the highest-fuel-ratio coal case is lower than that of the pure ammonia combustion case, although the flame propagation can be sustained due to the ammonia mixing. To explain the difference of tendencies depending on the fuel ratio of coal, a flame propagation mechanism of ammonia/coal particle cloud co-combustion was proposed. Two positive effects are the increases of local equivalence ratio and the increases of radiation heat flux, which increases the flame speed. In opposite, a negative effect is the heat sink effect that decreases the flame speed. The two positive effects on the flame speed of co-combustion overwhelm a negative effect for bituminous coal case, while the negative effect overcomes both positive effects for the highest-fuel-ratio coal case. The findings of the study can contribute to the reduction of solid fuel costs when the ammonia is introduced as CO2 free energy carrier and can improve the energy security through the utilization of high-fuel-ratio coals.  相似文献   

2.
Because ammonia is one of the most promising candidates for energy carrier in the future, various applications of ammonia as a fuel are currently considered. One medium for utilizing ammonia is by introducing it to coal-fired boilers. To the best of our knowledge, this paper is the first to report the fundamental mechanism of the flame propagation phenomenon for pulverized coal/ammonia co-combustion. The effects of the equivalence ratio of the ammonia-oxidizer mixture on the flame propagation velocity of pulverized coal/ammonia co-combustion in turbulent fields were clarified by the experiments employing a unique fan-stirred constant volume chamber. The flame propagation velocities of pulverized coal/ammonia co-combustion, pure ammonia combustion, and pure pulverized coal combustion were compared. As expected, the flame propagation velocity of pulverized coal/ammonia was higher than that of the pure pulverized coal combustion for all conditions. However, the comparison of the flame propagation velocities of pulverized coal/ammonia co-combustion and that of the pure ammonia combustion, revealed that whether the flame propagation of the pulverized coal/ammonia was higher than that of the pure ammonia combustion was dependent on the equivalence ratio of the ammonia-oxidizer. This unique feature was explained by a mechanism including three competing effects proposed by the authors. In the ammonia lean condition, the positive effects, which are the strong radiation from the luminous flame and the increment of local equivalence ratio by the addition of volatile matter, are larger than the negative effect, which is the heat absorption by coal particles in preheat zone. In the ammonia rich condition, the effect of an increment of the local equivalence ratio by the addition of volatile matter turns into a negative effect. Consequently, the negative effects overcome the positive effect in the ammonia rich condition resulting in a lower flame propagation velocity of pulverized coal/ammonia co-combustion.  相似文献   

3.
稀甲烷/氢气预混湍流传播火焰实验研究   总被引:1,自引:0,他引:1  
本文采用定容湍流燃烧弹获取了稀甲烷/氢气/空气在强湍流条件下的火焰发展历程,研究了湍流火焰在负马克斯坦数条件下的传播特性.结果表明,湍流火焰呈现自相似传播特性,即使在强湍流条件下,湍流传播火焰仍然会受到不稳定性的影响.并且随着马克斯坦数的减小,不稳定性对湍流传播火焰的影响增强。同时,本文获得一种新的湍流燃烧速度拟合公式,包含了负马克斯坦数条件下不稳定性对湍流燃烧速度的影响。  相似文献   

4.
Experimental studies of aerosol combustion under quiescent and turbulence conditions have been conducted to quantify the differences in the flame structure and burning rates between aerosol and gaseous mixtures. Turbulence was generated by variable speed fans to yield rms turbulence velocities between 0.5 and 4.0 m/s and this was uniform and isotropic. Homogeneously distributed and near monodispersed iso-octane-air aerosol clouds were generated using a thermodynamic condensation method. Spherically expanding flames, following central ignition, at near atmospheric pressures were employed to quantify the flame structure and propagation rate. The effects of the diameter of fine fuel droplets on flame propagation were investigated. It is suggested that the inertia of fuel droplets is an important cause of flame enhancement during early flame development. During later stages, cellular flame instability and the effective, gaseous phase, equivalence ratio becomes important. The latter effect leads has increases the flame speed of rich mixtures, but decreases that of lean ones. Droplet enhancement of burning velocity can be significant at low turbulence but is negligible at high turbulence.  相似文献   

5.
An experimental study on CH4–CO2–air flames at various pressures is conducted by using both laminar and turbulent Bunsen flame configurations. The aim of this research is to contribute to the characterization of fuel lean methane/carbon dioxide/air premixed laminar and turbulent flames at different pressures, by studying laminar and turbulent flame propagation velocities, the flame surface density and the instantaneous flame front wrinkling parameters. PREMIX computations and experimental results indicate a decrease of the laminar flame propagation velocities with increasing CO2 dilution rate. Instantaneous flame images are obtained by Mie scattering tomography. The image analysis shows that although the height of the turbulent flame increases with the CO2 addition rate, the flame structure is quite similar. This implies that the flame wrinkling parameters and flame surface density are indifferent to the CO2 addition. However, the pressure increase has a drastic effect on both parameters. This is also confirmed by a fractal analysis of instantaneous images. It is also observed that the combustion intensity ST/SL increases both with pressure and the CO2 rate. Finally, the mean fuel consumption rate decreases with the CO2 addition rate but increases with the pressure.  相似文献   

6.
Ammonia is one of promising energy carriers that can be directly used as carbon-neutral fuel for combustion applications. However, because of the low-burning velocity of ammonia, it is challenging to introduce ammonia to practical combustors those are designed for general hydrocarbon fuels. One of ways to enhance the combustibility of ammonia is by mixing it with other hydrocarbon fuels, such as methane, with a burning velocity is much higher than the burning velocity of ammonia. In this study, we conducted flame propagation experiments of ammonia/methane/air using a fan-stirred constant volume vessel to clarify the effect of methane addition to ammonia on the turbulent flame propagation limit. From experimental results, we constructed the flame propagation maps and clarified the flame propagation limits. The results show that the flame propagation limits were extended with an increase in mixing a fraction of methane to ammonia. Additionally, ammonia/methane/air mixtures with the equivalence ration of 0.9 can propagate at the highest turbulent intensity, even though the peak of the laminar burning velocity is the fuel-rich side because of the diffusional-thermal instability of the flame surface. Furthermore, the Markstein number of the mixture obtained in this research successfully expressed the strength of the diffusional-thermal instability effect on the flame propagation capability. The turbulence Karlovitz number at the flame propagation limit monotonically increases with the decreasing Markstein number.  相似文献   

7.
杨晋朝  夏智勋  胡建新 《物理学报》2013,62(7):74701-074701
建立了一维非稳态球形镁颗粒群的着火燃烧模型, 数值模拟镁颗粒群的着火和燃烧过程, 研究表明, 颗粒群着火首先发生在颗粒群边界, 随后初始的燃烧火焰会分离为两个, 一个向颗粒群内部传播, 一个向外部传播, 最终内部火焰消失, 外部火焰维持并控制着整个颗粒群的燃烧; 内火焰向颗粒群内部传播过程中, 传播速度会逐渐加快, 且火焰温度值呈逐渐降低趋势. 分析了颗粒群内部参数和环境参数对镁颗粒群着火燃烧的影响. 随颗粒浓度的增大, 颗粒群着火时间略有增长, 但火焰传播速度更快, 燃烧稳定时火焰球尺寸也更大. 颗粒群初温越高, 则颗粒群着火时间越短, 火焰传播速度也会加快, 但燃烧稳定时火焰球尺寸基本不变. 环境温度对颗粒群着火燃烧的影响较复杂, 环境温度越高, 颗粒群着火时间越短, 但火焰传播速度却越慢, 燃烧稳定时火焰球尺寸变化很小. 颗粒粒径和辐射源温度对颗粒群着火燃烧的影响较显著, 颗粒粒径越小或辐射源温度越高, 则颗粒群着火时间越短, 火焰传播速度越快, 燃烧稳定时火焰球尺寸也越大. 数值模拟结果与文献中试验结果相一致. 关键词: 粉末燃料冲压发动机 镁着火燃烧 颗粒群  相似文献   

8.
Ammonia appears a promising hydrogen-energy carrier as well as a carbon-free fuel. However, there remain limited studies for ammonia combustion especially under turbulent conditions. To that end, using the spherically expanding flame configuration, the turbulent flame speeds of stoichiometric ammonia/air, ammonia/methane and ammonia/hydrogen were examined. The composition of blends studied are currently being investigated for gas turbine application and are evaluated at various turbulent intensities, covering different kinds of turbulent combustion regimes. Mie-scattering tomography was employed facilitating flame structure analysis. Results show that the flame propagation speed of ammonia/air increases exponentially with increasing hydrogen amount. It is less pronounced with increasing methane addition, analogous to the behavior displayed in the laminar regime. The turbulent to laminar flame speed ratio increases with turbulence intensity. However, smallest gains were observed at highest hydrogen content, presumably due to differences in the combustion regime, with the mixture located within the corrugated flamelet zone, with all other mixtures positioned within the thin reaction zone. A good correlation of the turbulent velocity based on the Karlovitz and Damköhler numbers is observable with the present dataset, as well as previous experimental measurements available in literature, suggesting that ammonia-based fuels may potentially be described following the usual turbulent combustion models. Flame morphology and stretch sensitivity analysis were conducted, revealing that flame curvature remains relatively similar for pure ammonia and ammonia-based mixtures. The wrinkling ratio is found to increase with both increasing ammonia fraction and turbulent intensity, in good agreement with measured increases in turbulent flame speed. On the other hand, in most cases, the flame stretch effect does not change significantly with increasing turbulence, whilst following a similar trend to that of the laminar Markstein length.  相似文献   

9.
本文应用强旋湍流气一固两相流动和煤粉燃烧的数学模型,对新型涡旋燃烧炉内的流动、传热和燃烧过程进行了系统的模拟和分析,得到了与实验相符合的结果。结果表明,涡旋燃烧炉内的湍流空气动力场分布具有强旋、回流和正在发展流的特点。水冷壁总吸热量随燃烧热负荷的增大成比例地增加。煤粉颗粒在炉内的平均停留时间随初始粒径的增大而加长。炉内可实现煤粉的低温、强旋、高效率和高强度燃烧。  相似文献   

10.
煤粉燃烧火焰辐射光谱实验研究   总被引:1,自引:0,他引:1  
针对煤粉燃烧辐射光谱问题,利用光纤光谱仪对煤粉平面火焰炉实验装置煤粉燃烧火焰辐射光谱进行了测量,详细分析了煤粉辐射光谱特征,并基于普朗克辐射传热定律,通过对光谱仪波长响应特性的标定,得到火焰绝对辐射强度随波长的分布情况,进而利用最小二乘法获得火焰温度与辐射率参数,由此提出基于煤粉燃烧火焰辐射光谱测量的火焰参数测量方法。利用该方法对不同燃烧条件下煤粉燃烧参数进行测量,开展了不同燃烧参数下煤粉火焰辐射光谱实验研究,研究结果表明:煤粉燃烧火焰辐射在200~1 100 nm波段具有较强且连续的光谱特征,基于普朗克辐射定律与最小二乘法可实现煤粉燃烧火焰温度与辐射率的测量;煤粉燃烧火焰辐射光谱在590,766,769和779 nm附近可见明显的Na和K等碱金属痕量元素原子光谱发射谱线,并且这些原子谱线的出现与火焰温度有关;随着煤粉浓度的提高,虽然燃烧温度变化不大,但由于火焰辐射率的增加,造成辐射光谱强度的大幅提升。这对锅炉煤粉燃烧优化具有重要参考价值。  相似文献   

11.
一种低湍流扬尘方法的实验研究   总被引:2,自引:0,他引:2  
对一种新型扬尘方法在垂直管道中形成的扬尘湍流特性进行了测量,在此基础上,观察和测量了玉米粉尘火焰向上传播的过程,讨论了湍流对火焰特性的影响。新方法产生的扬尘湍流强度相当低,随时间衰减缓慢,扬尘湍流的积分尺度随着时间增大,约为2 cm到3 cm。实验中观察到两种粉尘火焰:湍流火焰和层流火焰,火焰形态转变对应的点火延迟时间约等于1.1 s,即粉尘云湍流运动强度为10 cm/s,湍流火焰传播速度明显大于层流火焰。  相似文献   

12.
Ammonia is a highly promising energy carrier for achieving a carbon-neutral society. The co-combustion of solid particle clouds–ammonia, in particular, is considered an efficient and feasible method of reducing carbon dioxide emissions. Understanding turbulent flame stabilization and extinguishment processes during the two-phase hybrid-mixture co-combustion of solid particle clouds–ammonia is essential for the co-combustion technology to be used in combustors. To the best of our knowledge, this is the first study to describe the turbulent flame propagation limits and associated mechanism on the co-combustion of solid particle clouds–ammonia–air. Turbulent flame propagation experiments on silica particle clouds–ammonia–air mixing combustion and polymethylmethacrylate (PMMA) particle cloud–ammonia–air co-combustion were conducted in this work using a novel fan-stirred constant-volume vessel to clarify the turbulent flame propagation limits and associate mechanism of solid particle cloud–ammonia–air co-combustion. Results showed that adding inert silica particles contracted the turbulent flame propagation limits of premixed ammonia–air mixtures. However, adding PMMA particles expanded and then contracted the turbulent flame propagation limits of a premixed ammonia–air mixture as the ammonia equivalence ratio increased from lean to rich. In the solid particle cloud–ammonia–air co-combustion, reactive particles induce two types of effects on the turbulent flame propagation limits of premixed ammonia–air mixtures: The local equivalence ratio increment effect is caused by adding volatile matter from preheated particles in the preheat zone of the flame front, and the heat sink negative effect is induced by the unburned particles.  相似文献   

13.
Large eddy simulations (LES) are employed to investigate the effect of the inlet turbulence intensity on the H2/CH4 flame structure in a hot and diluted co-flow stream which emulates the (Moderate or Intense Low-oxygen Dilution) MILD combustion regime. In this regard, three fuel inlet turbulence intensity profiles with the values of 4%, 7% and 10% are superimposed on the annular mixing layer. The effects of these changes on the flame structure under the MILD condition are studied for two oxygen concentrations of 3% and 9% (by mass) in the oxidiser stream and three hot co-flow temperatures 1300, 1500 and 1750 K. The turbulence-chemistry interaction of the numerically unresolved scales is modelled using the (Partially Stirred Reactor) PaSR method, where the full mechanism of GRI-2.11 represents the chemical reactions. The influences of the turbulence intensity on the flame structure under the MILD condition are studied by using the profile of temperature, CO and OH mass fractions in both physical and mixture fraction spaces at two downstream locations. Also, the effects of this parameter are investigated by contours of OH, HCO and CH2O radicals in an area near the nozzle exit zone. Results show that increasing the fuel inlet turbulence intensity has a profound effect on the flame structure particularly at low oxygen mass fraction. This increment weakens the combustion zone and results in a decrease in the peak values of the flame temperature and OH and CO mass fractions. Furthermore, increasing the inlet turbulence intensity decreases the flame thickness, and increases the MILD flame instability and diffusion of un-burnt fuel through the flame front. These effects are reduced by increasing the hot co-flow temperature which reinforces the reaction zone.  相似文献   

14.
A turbulent piloted jet flame subject to a rapid velocity pulse in its fuel jet inflow is proposed as a new benchmark case for the study of turbulent combustion models. In this work, we perform modelling studies of this turbulent pulsed jet flame and focus on the predictions of its flow and turbulence fields. An advanced modelling strategy combining the large eddy simulation (LES) and the probability density function (PDF) methods is employed to model the turbulent pulsed jet flame. Characteristics of the velocity measurements are analysed to produce a time-dependent inflow condition that can be fed into the simulations. The effect of the uncertainty in the inflow turbulence intensity is investigated and is found to be very small. A method of specifying the inflow turbulence boundary condition for the simulations of the pulsed jet flame is assessed. The strategies for validating LES of statistically transient flames are discussed, and a new framework is developed consisting of different averaging strategies and a bootstrap method for constructing confidence intervals. Parametric studies are performed to examine the sensitivity of the predictions of the flow and turbulence fields to model and numerical parameters. A direct comparison of the predicted and measured time series of the axial velocity demonstrates a satisfactory prediction of the flow and turbulence fields of the pulsed jet flame by the employed modelling methods.  相似文献   

15.
1引言目前煤粉燃烧综合模型最为广泛的是以轨道模型为基础,美国杨伯翰大学的先进燃烧工程中心(CERC)自1980年起研制二维煤粉燃烧程序PCGC-2,从1990年起研制三维煤粉燃烧的PCGC-3程序[1]。与轨道模型发展的同时,美国Rabcock&Wilcox公司Fiveland[2]等人研制了FURMO程序,用无滑移模型对560MW侧墙喷燃煤粉炉进行了三维全模拟。其特点是首次用全欧拉的处理方法计算三维煤粉燃烧过程,其不足之处是不考虑气粒两相间的速度滑移和温度滑移.总的看来,用轨道模型模拟煤粉燃烧,易于考虑颗粒反应经历,也可给出两相之间的速度及温…  相似文献   

16.
To reveal the inner mechanisms of a combustion accident in a coalmine, the key stages and characteristics of premixed flame front evolution such as the flame shapes, propagation speeds, acceleration rates, run-up distances and flame-generated velocity profiles are scrutinised. The theories of globally spherical, expanding flames and of finger-flame acceleration are combined into a general analytical formulation. Two-dimensional and cylindrical mining passages are studied, with noticeably stronger acceleration found in the cylindrical geometry. The entire acceleration scenario may promote the total burning rate by up to two orders of magnitude, to a near-sonic value. Starting with gaseous combustion, the analysis is subsequently extended to gaseous-dusty environments. Specifically, combustible dust (e.g. coal), inert dust (e.g. sand), and their combination are considered, and the influence of the size and concentration of the dust particles is quantified. In particular, small particles influence flame propagation more than large ones, and flame acceleration increases with the concentration of a combustible dust, until the concentration attains a certain limit.  相似文献   

17.
A three mixture fraction flamelet model is proposed for multi-stream laminar pulverized coal combustion. The technique of coordinate transformation is utilized to map the flamelet solutions from a unit pyramid space into a unit cubic space to improve the stability of the simulation. The validity of the three mixture fraction flamelet model was assessed on different configurations, including a laminar counterflow pulverized coal/methane flame and a laminar piloted pulverized coal jet flame. The flamelet predictions were compared to the reference results of the detailed chemistry solutions. For the counterflow flame, it was found that the flame temperature and major species mass fractions are correctly predicted by the three mixture fraction flamelet model. However, discrepancies are observed for combustion-mode-sensitive species such as CO and H2 in the premixed combustion region. The thermo-chemical quantities in the char surface reaction zone cannot be correctly predicted if the mixing between the char off-gas stream and other streams is neglected. For the piloted jet flame, it was shown that the stable thermo-chemical variables can be correctly predicted at the upper and middle stream locations. However, at the downstream location, discrepancies can be observed in certain regions. Overall, the validity of the three mixture fraction flamelet model for multi-stream pulverized coal combustion is confirmed and its performance in turbulent pulverized coal combustion will be tested in future work.  相似文献   

18.
An experimental study was performed on the combustion characteristics of a jet diffusion flame of Mg vapor injected through a small nozzle into CO2 atmospheres at low pressures from 8 to 48 kPa with a view to using Mg as fuel for a CO2-breathing turbojet engine in the Mars atmosphere. The Mg vapor jet produced three types of the flame. At lower pressures and higher injection velocities, a red-heated jet flame formed, in which the injected Mg vapor was heated by spontaneous reactions, turning red. At medium pressures and injection velocities, a stable luminous lifted-like flame developed above the rim of the chimney, a tube-like combustion product for the Mg vapor passage that grew on the nozzle during combustion. The flame had similar flame length properties to laminar jet diffusion flames of gaseous fuels. At higher pressures and lower injection velocities, a stable luminous attached flame developed at the rim of the chimney. The same reactions, producing MgO(g), CO and MgO(c), proceeded preferentially for all flames and chimneys. Carbon was only subordinately generated. Burning behavior of Mg vapor jets in a CO2 atmosphere has been represented, including the homogeneous reaction of Mg vapor with CO2, the diffusion of CO2, and the condensation and deposit of MgO. The injection velocity of Mg vapor at the rim of the chimney and the exothermic reactions with diffused CO2 that occur there play a crucial role in the attachment and development of the flames. The flame structure may be explained in terms of the relatively low gas-phase reaction rate of Mg with CO2.  相似文献   

19.
旋流煤粉燃烧器加进口堵塞和煤粉浓缩器可以影响湍流,燃烧温度以及煤粉浓度的分布,从而影响NO的生成与排放。本文用三维相位多普勒颗粒测速仪(PDPA)测量和双流体模型数值模拟研究了堵塞和煤粉浓缩器对旋流煤粉燃烧器内两相流动的影响。实验结果和数值模拟结果基本符合。实验和模拟结果都表明,无论是进口堵塞还是煤粉浓缩器都会增加旋流燃烧器的进口湍流度,同时增加进口轴线附近的颗粒浓度,后者将有利于降低NO排放。  相似文献   

20.
We investigate the role played by hydrodynamic instability in the wrinkled flamelet regime of turbulent combustion, where the intensity of turbulence is small compared to the laminar flame speed and the scale large compared to the flame thickness. To this end the Michelson–Sivashinsky (MS) equation for flame front propagation in one and two spatial dimensions is studied in the presence of uncorrelated and correlated noise representing a turbulent flow field. The combined effect of turbulence intensity, integral scale, and an instability parameter related to the Markstein length are examined and turbulent propagation speed monitored for both stable planar flames and corrugated flames for which the planar conformation is unstable. For planar flames a particularly simple scaling law emerges, involving quadratic dependence on intensity and a linear dependence on the degree of instability. For corrugated flames we find the dependence on intensity to be substantially weaker than quadratic, revealing that corrugated flames are more resilient to turbulence than planar flames. The existence of a threshold turbulence intensity is also observed, below which the corrugated flame in the presence of turbulence behaves like a laminar flame. We also analyze the conformation of the flame surface in the presence of turbulence, revealing primary, large-scale wrinkles of a size comparable to the main corrugation. When the integral scale is much smaller than the characteristic corrugation length we observe, in addition to primary wrinkles, secondary small-scale wrinkles contaminating the surface. The flame then acquires a multi-scale, self-similar conformation, with a fractal dimension, for one-dimensional flames, plateauing at 1.23 for large intensities. The existence of an intermediate integral scale is also found at which the turbulent speed is maximized. When two-dimensional flames are subject to turbulence, the primary wrinkling patterns give rise to polyhedral-cellular structures which bear a very close resemblance to those observed in experiments on hydrodynamically unstable expanding spherical flames.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号