首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The propagation of a propane-air flame in a model internal combustion chamber, a tube with one or two pistons, is studied experimentally. Situations are simulated in which the flame front moves in a semiopen flat or cylindrical tube between two pistons or between a piston and the closed end of the tube. The time dependence of the flame front position and acceleration is obtained for the case of the variable tube length and combustible mixture volume. Self-oscillation conditions for the flame front and piston are determined. A relation between their amplitude-frequency characteristics is found. It is established that the piston paradox motion effect, i.e., the motion of the piston toward the flame front, depends on the length of the tube. It is demonstrated that the piston effect is related to the formation of a “tulip” flame. An explanation to the observed hydrodynamic phenomena is given.  相似文献   

2.
Numerous formulations describing the dynamics and morphology of corrugated flames, including the scenarios of flame acceleration, are based on a “geometrical consideration”, where the wrinkled-to-planar flame velocities ratio, Sw /SL , is evaluated as the scaled flame surface area, while the entire combustion chemistry is immersed into the planar flame speed SL , which is assumed to be constant. However, SL may experience noticeable spatial/temporal variations in practice, in particular, due to pressure/temperature variations as well as non-uniform distribution of the equivalence ratio and/or that of combustible or inert dust impurities. The present work initiates the systematic study of the impact of the local SL -variations on the global flame evolution scenario. The variations are assumed to be imposed externally, in a manner being a free functional of the formulation. Specifically, the linear, parabolic and hyperbolic spatial SL -distributions are incorporated into the formulations of finger flame acceleration in pipes, and they are compared to the case of constant SL . Both two-dimensional channels and cylindrical tubes are considered. The conditions promoting or moderating flame acceleration are identified, and the revisited equations for the flame shape, velocity and acceleration rate are obtained for various SL -distributions. The theoretical findings are validated by the computational simulations of the reacting flow equations, with agreement between the theory and modelling demonstrated.  相似文献   

3.
Numerical simulations are used to study the effect of the chemical composition of the combustible mixture on the development of the hydrodynamic instability of the flame front, its acceleration, and the possibility of transition to the detonation regime. The combustion of hydrogen-containing mixtures in confined spaces (channels) was considered. Calculations were performed within the framework of a two-dimensional hydrodynamic model for the combustion of premixed mixtures with account of viscosity, heat conduction, multicomponent diffusion, and chemical kinetics. It was demonstrated that the presence of an inert component and the deviation of the mixture composition from stoichiometry caused not only a quantitative but also a qualitative change in the character of burning of gaseous combustible mixtures.  相似文献   

4.
A recent predictive scenario of a methane/air/coal dust fire in a mining passage is extended by incorporating the effect of gas compressibility into the analysis. The compressible and incompressible formulations are compared, qualitatively and quantitatively, in both the two-dimensional planar and cylindrical-axisymmetric geometries, and a detailed parametric study accounting for coal-dust combustion is performed. It is shown that gas compression moderates flame acceleration, and its impact depends on the type of the fuel, its various thermal-chemical parameters as well as on the geometry of the problem. While the effect of gas compression is relatively minor for the lean and rich flames, providing 5–25% reduction in the burning velocity and thereby justifying the incompressible formulation in that case, such a reduction appears significant, up to 70% for near-stoichiometric methane–air combustion, and therefore it should be incorporated into a rigorous formulation. It is demonstrated that the flame tip velocity remains noticeably subsonic in all the cases considered, which is opposite to the prediction of the incompressible formulation, but qualitatively agrees with the experimental predictions from the literature.  相似文献   

5.
Understanding the causes and mechanisms of large explosions, especially dust explosions, is essential for minimising devastating hazards in many industrial processes. It is known that unconfined dust explosions begin as primary (turbulent) deflagrations followed by a devastating secondary explosion. The secondary explosion may propagate with a speed of up to 1000 m/s producing overpressures of over 8–10 atm, which is comparable with overpressures produced in detonation. Since detonation is the only established theory that allows rapid burning producing a high pressure that can be sustained in open areas, the generally accepted view was that the mechanism explaining the high rate of combustion in dust explosions is deflagration-to-detonation transition. In the present work we propose a theoretical substantiation of an alternative mechanism explaining the origin of the secondary explosion producing high speeds of combustion and high overpressures in unconfined dust explosions. We show that the clustering of dust particles in a turbulent flow ahead of the advancing flame front gives rise to a significant increase of the thermal radiation absorption length. This effect ensures that clusters of dust particles are exposed to and heated by radiation from hot combustion products of dust explosions for a sufficiently long time to become multi-point ignition kernels in a large volume ahead of the advancing flame. The ignition times of a fuel–air mixture caused by radiatively heated clusters of particles is considerably reduced compared with the ignition time caused by an isolated particle. Radiation-induced multipoint ignitions of a large volume of fuel–air ahead of the primary flame efficiently increase the total flame area, giving rise to the secondary explosion, which results in the high rates of combustion and overpressures required to account for the observed level of overpressures and damage in unconfined dust explosions, such as for example the 2005 Buncefield explosion and several vapour cloud explosions of severity similar to that of the Buncefield incident.  相似文献   

6.
文章提出了一种采用圆柱形汇聚激波实现可燃气体点火特性研究的新方法.通过采用激波动力学理论合理地设计壁面型线, 将激波管中产生的平面运动激波近乎连续地转变为扇形区内圆柱形汇聚激波.以氢氧预混气体为考察对象, 开展了相关激波管实验, 实现了可控圆柱面激波汇聚诱导点火.实验发现两种点火现象:强点火和弱点火.在强点火过程中, 点火由入射激波直接诱导产生; 而在弱点火过程中, 点火则是在波后气流经历热压缩过程后发生.   相似文献   

7.
Stabilized,flat iron flames on a hot counterflow burner   总被引:1,自引:0,他引:1  
Metal powder combustion has traditionally been studied to mitigate the risk of industrial accidents and to determine the contributions of metals as additives to the performance of energetic materials. Recently, there has been growing interest in exploring the potential of metal powders as recyclable, zero-carbon energy carriers as an alternative to the hydrocarbons known to contribute to climate change. The present work introduces, for the first time, a stabilized flat iron flame. The counterflow burner used in this work is comprised of an inverted ceramic nozzle which sits above, and is aligned axially with, a lower nozzle producing a laminar flow of particles suspended in an oxidizing gas. A stabilized methane flame sits inside the top nozzle and the hot combustion products impinge upon the two-phase flow from the bottom nozzle, creating a stagnation plane. Spherical iron powder, with 90% of the particles less than 2.5 µm in size, is pre-loaded into a piston and dispersed using mixtures of 30% and 40% oxygen balanced in argon. Flame speeds are measured using particle image velocimetry (PIV), while flame temperatures are determined using multicolour pyrometry. It is found that flame speeds range between 30 cm/s and 45 cm/s for both oxidizing mixtures. Despite having fuel loadings below stoichiometric concentrations, the observed particle combustion temperatures are close to the adiabatic flame temperature of the stoichiometric mixture, indicating combustion in the diffusion-controlled regime for these small particles. Finally, the independence of the flame speeds with respect to oxygen concentration suggests flame propagation in the discrete regime.  相似文献   

8.
Data obtained in 3D direct numerical simulations of statistically planar, 1D weakly turbulent flames characterised by different density ratios σ are analysed to study the influence of thermal expansion on flame surface area and burning rate. Results show that, on the one hand, the pressure gradient induced within a flame brush owing to heat release in flamelets significantly accelerates the unburned gas that deeply intrudes into the combustion products in the form of an unburned mixture finger, thus causing large-scale oscillations of the burning rate and flame brush thickness. Under the conditions of the present simulations, the contribution of this mechanism to the creation of the flame surface area is substantial and is increased by σ, thus implying an increase in the burning rate by σ. On the other hand, the total flame surface areas simulated at σ = 7.53 and 2.5 are approximately equal. The apparent inconsistency between these results implies the existence of another thermal expansion effect that reduces the influence of σ on the flame surface area and burning rate. Investigation of the issue shows that the flow acceleration by the combustion-induced pressure gradient not only creates the flame surface area by pushing the finger tip into the products, but also mitigates wrinkling of the flame surface (the side surface of the finger) by turbulent eddies. The latter effect is attributed to the high-speed (at σ = 7.53) axial flow of the unburned gas, which is induced by the axial pressure gradient within the flame brush (and the finger). This axial flow acceleration reduces the residence time of a turbulent eddy in an unburned zone of the flame brush (e.g. within the finger). Therefore, the capability of the eddy for wrinkling the flamelet surface (e.g. the side finger surface) is weakened owing to a shorter residence time.  相似文献   

9.
Modes of particle combustion in iron dust flames   总被引:1,自引:0,他引:1  
The so-called argon/helium test is proposed to identify the combustion mode of particles in iron dust flames. Iron powders of different particle sizes varying from 3 to 34 μm were dispersed in simulated air compositions where nitrogen was replaced by argon and helium. Due to the independence of the particle burning rate on the oxygen diffusivity in the kinetic mode, the ratio between the flame speeds in helium and argon mixtures is expected to be smaller if the particle burning rate is controlled by reaction kinetics rather than oxygen diffusion. Experiments were performed in a reduced-gravity environment on a parabolic flight aircraft to prevent particle settling and buoyancy-driven disruption of the flame. Uniform suspensions of the iron powders were produced inside glass tubes and a flame was initiated at the open end of the tube. Quenching plate assemblies of various channel widths were installed inside the tube and pass or quench events were used to measure the quenching distance. Flame propagation was recorded by a high-speed digital camera and spectral measurements were used to determine the temperature of the condensed emitters in the flame. The measured flame speeds and quenching distances were in good agreement with previously developed one-dimensional, dust flame model where the particles are assumed to burn in a diffusive mode and heat losses are described on a volumetric basis. However, a significant drop of the ratio of flame speeds in helium and argon mixtures was observed for finer 3 μm particles and was attributed to a transition from the combustion controlled by diffusion for larger particles to kinetically controlled burning of micron-size particles. In helium mixtures, the lower flame temperatures measured in suspensions of fine particles in comparison to larger particles reinforces this assumption.  相似文献   

10.
O2/H2O combustion, as a new evolution of oxy-fuel combustion, has gradually gained more attention recently for carbon capture in a coal-fired power plant. The physical and chemical properties of steam e.g. reactivity, thermal capacity, diffusivity, can affect the coal combustion process. In this work, the ignition and volatile combustion characteristics of a single lignite particle were first investigated in a fluidized bed combustor under O2/H2O atmosphere. The flame and particle temperatures were measured by a calibrated two-color pyrometry and pre-buried thermocouple, respectively. Results indicated that the volatile flame became smaller and brighter as the oxygen concentration increased. The ignition delay time of particle in dense phase was shorter than that in dilute phase due to its higher heat transfer coefficient. Also, the volatile flame was completely separated from particles (defined as off-flame) in dense phase while the flame lay on the particle surface (defined as on-flame) in dilute phase. The self-heating of fuel particles by on-flame in dilute phase was more obvious than that in dense phase, leading to earlier char combustion. At low oxygen concentration, the flame in the H2O atmosphere was darker than that in the N2 atmosphere because the heat capacity of H2O is higher than that of N2. With the increase of oxygen concentration, the flame temperature in the O2/H2O atmosphere was dramatically enhanced rather than that in the O2/N2 atmosphere, where the diffusion rate of oxygen in O2/N2 atmosphere became the dominant factor.  相似文献   

11.
The combustion of bimodal nano/micron-sized aluminum particles with air is studied both analytically and experimentally in a well-characterized laminar particle-laden flow. Experimentally, an apparatus capable of producing Bunsen-type premixed flames was constructed to investigate the flame characteristics of bimodal-particle/air mixtures. The flame speed is positively affected by increasing the mass fraction of nano particles in the fuel formulation despite the lower flame luminosity and thicker flame zone. Theoretically, the flames are assumed to consist of several different regimes for fuel-lean mixture, including the preheat, flame, and post flame zones. The flame speed and temperature distribution are derived by solving the energy equation in each regime and matching the temperature and heat flux at the interfacial boundaries. The analysis allows for the investigation of the effects of particle composition and equivalence ratio on the burning characteristics of aluminum-particle/air mixtures. Reasonable agreement between theoretical results and experimental data was obtained in terms of flame speed. The flame structure of a bimodal particle dust cloud may display either an overlapping or a separated configuration, depending on the combustion properties of aluminum particles at different scales. At low percentages of nano particles in the fuel formulation, the flame exhibits a separated spatial structure with a wider flame regime. At higher nano-particle loadings, overlapping flame configurations are observed.  相似文献   

12.
A multi-stream Flamelet Progress Variable (FPV) model, specifically developed for coal combustion, is proposed. The model accounts for the different fuel streams associated with the volatile and char burnout products. The applicability of the new FPV model is investigated in a laminar stagnation pulverized coal flame. The flame considered is a premixed mixture of CH4, O2 and N2, carrying pulverized coal particles, stabilized in an impinging wall. Spontaneous emissions of OH*, CH* and C2* are measured to identify the flame. The 1D numerical simulations of the experimental conditions are able to reproduce the main features of the flame. The applicability of the multi-stream FPV model to coal combustion is further evaluated with the a posteriori analysis of the FPV results, comparing the results with a reference model, where the species are fully transported and the chemistry directly evaluated. Then, with the budget analysis, the influence of the control variables used to build the look-up table is assessed by examining the conditional contributions to the overall transport terms of scalar quantities (e.g. species, temperature). The results of both analyses show that the proposed multi-stream FPV model can accurately predict the main features of coal combustion, with only minor issues related to the manifold used to build the look-up table.  相似文献   

13.
The combustion of magnesium particles in water vapor is of interest for underwater propulsion and hydrogen production. In this work, the combustion process of a single magnesium particle in water vapor is studied both experimentally and theoretically. Combustion experiments are conducted in a combustor filled with motionless water vapor. Condensation of gas-phase magnesia on the particle surface is confirmed and gas-phase combustion flame characteristics are observed. With the help of an optical filter and a neutral optical attenuator, flame structures are captured and determined. Flame temperature profiles are measured by an infrared thermometer. Combustion residue is a porous oxide shell of disordered magnesia crystal, which may impose a certain influence on the diffusivity of gas phases. A simplified one-dimensional, spherically symmetric, quasi-steady combustion model is then developed. In this model, the condensation of gas-phase magnesia on the particle surface and its influence on the combustion process are included, and the Stefan problem on the particle surface is also taken into consideration. With the combustion model, the parameters of flame temperature, flame diameter, and the burning time of the particle are solved analytically under the experimental conditions. A reasonable agreement between the experimental and modeling results is demonstrated, and several features to improve the model are identified.  相似文献   

14.
We study the effects of non-parallel (diverging or converging) channel walls on flame propagation and acceleration in planar and cylindrical narrow channels, closed at the ignition end and open at the other, accounting for thermal expansion in both the zero Mach number and weakly compressible flow limits. For parallel channel walls, previous work has shown that thermal expansion induces an axial flow in the channel, which can significantly increase the propagation speed and acceleration of the flame. In this study, we consider examples of diverging/converging linear walls, although our asymptotic analysis is also valid for curved walls. The slope of the channel walls is chosen so that the magnitude of the thermal-expansion induced flow through the channel obtained for parallel walls is modified at leading-order, thereby influencing the leading-order flame propagation. For zero Mach number flows, the effect of the diverging/converging channel walls is moderate. However, for weakly compressible flows, the non-parallel walls directly affect the rate at which pressure diffuses through the channel, significantly inhibiting flame acceleration for diverging walls, whereas the flame acceleration process is enhanced for converging walls. We consider several values of the compressibility factor and channel wall slopes. We also show that the effect of a cylindrical channel geometry can act to significantly enhance flame acceleration relative to planar channels. The study reveals several new physical insights on how non-parallel channel walls can influence the ability of flames to accelerate by modifying the flow and pressure distribution induced by thermal expansion.  相似文献   

15.
The characteristics of polymer combustion were studied. The contributions from the conductive, convective, and radiation components of the total heat flow from the flame to the polymer surface were determined. The influence of inhibitors on the rate of chemical reactions in the preignition zone and on the rate of heat and mass exchange between the flame and the burning surface was estimated. It was shown that a change in the heat balance and heat and mass exchange accompanied by changing the optical properties of the flame and burning surface has a pronounced effect on the combustion rate at the flame edge. The formation of a protective coke layer reduces heat flow to the surface of a nonreacted polymer, leading to a decrease in the rate of evolution of the volatile combustible polymer-destruction products into the gas phase. As a result, the flame temperature decreases and it is extinguished.  相似文献   

16.
对未燃烧的可燃混合气体进行DBD放电,放电后会产生大量的活性粒子,这些活性粒子可以辅助气体燃烧,达到提高燃料燃烧利用率等目的。以DBD激励氩气、甲烷、空气产生的自由基(CH基和OH基)等强化燃烧的关键活性粒子为探索对象,研究DBD放电激励甲烷对滑动弧火焰的影响。为此,采用自主设计的DBD-滑动弧双模式等离子体激励器,利用同轴介质阻挡放电结构对氩气、甲烷、空气混合气进行放电激励,将激励后的氩气、甲烷、空气混合气通入滑动弧端进行点火。固定氩气流量不变,调整空气流量为4.76 L·min-1,并加入甲烷0.5 L·min-1,保证进气通道内氩气与空气-甲烷的气体体积流量比达到Ar∶(CH4+Air)=1∶30,其中空气、甲烷这两种气体达到了化学燃烧当量比φ=1,氩气、甲烷、甲烷混合气体能实现均匀而稳定的放电并燃烧。DBD段放电电压在15~20 kV范围变化,放电频率在6~10 kHz范围变化,滑动弧段的电压和频率分别保持4 kV与10 kHz恒定,通过改变DBD段放电电压和放电频率,用高速光纤光谱仪检测滑动弧火焰中自由基种类及其光谱强度,分析放电参数激励甲烷对火焰中自由基(CH基和OH基)的影响。结果表明,DBD段放电电压及放电频率的增加可以促进火焰内部的偶联反应发生,可有效提升甲烷滑动弧火焰内部的活性粒子含量,其中OH基团、CH基团在燃烧链式化学反应进程中发挥着较为重要的作用。甲烷经过DBD激励后,随放电电压和频率的增加,火焰中OH基、CH基等主要活性粒子都随之增加。DBD放电后,活性粒子的光谱强度增大,特征谱线比单模式更加明显;甲烷经过DBD激励后,火焰组成发生了变化,滑动弧段出口处甲烷燃烧反应更加充分,火焰温度越高越容易产生OH基。与单模式滑动弧相比,双模式放电可有效促进火焰内部的链式化学反应进程,促进燃料燃烧。  相似文献   

17.
等离子体对含硼两相流扩散燃烧特性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
张鹏  洪延姬  丁小雨  沈双晏  冯喜平 《物理学报》2015,64(20):205203-205203
为排除来流空气对含硼燃气的掺混效应, 研究等离子体对含硼富燃料推进剂在补燃室二次燃烧过程的影响, 建立了含硼两相流平行进气扩散燃烧物理模型. 利用高速摄影仪拍摄了含硼燃气在补燃室二次燃烧的火焰图像, 分析了该物理模型的扩散燃烧特性和硼颗粒的二次点火距离. 采用硼颗粒的King点火模型、有限速度/涡耗散模型、颗粒轨道模型和RNG k-ε模型以及等离子体模型, 模拟了一定条件下等离子体对含硼两相流扩散燃烧过程的影响. 结果表明, 依据含硼燃气二次燃烧图像得到的硼颗粒二次点火距离, 与数值模拟结果基本一致, 保证了该物理模型和计算方法的可靠性. 含硼两相流经过等离子体区域后, 硼颗粒在运动轨迹上颗粒温度明显增加, 颗粒直径明显减小, B2O3的质量分数分布区域明显扩增, 70%的硼颗粒在到达补燃室2/3尺寸前燃烧效率已达到100%, 硼颗粒充分燃烧释放出更多热量导致中心流线区域温度增加近1/2, 可见等离子体可以明显强化含硼两相流的燃烧过程, 提高硼颗粒的燃烧效率.  相似文献   

18.
The propagation of laminar and turbulent expanding flames subjected to Darrieus–Landau (DL), hydrodynamic instability was experimentally studied by employing stoichiometric H2/O2/N2 flames under quiescent and turbulent conditions performed in a newly developed medium-scale, fan-stirred combustion chamber. In quiescent environment, DL unstable laminar flame exhibits three-stage propagation, i.e. smooth expansion, transition acceleration, and self-similar acceleration. The self-similar acceleration is characterized by a power-law growth of acceleration exponent, α, with normalized Peclet number, which is different from the usually suggested self-similar propagation with a constant α. The imposed turbulence advances the onset of both transition acceleration and self-similar acceleration stages and promotes the strength of flame acceleration as additional wrinkles are invoked by turbulence eddies. A DL–turbulent interaction regime is confirmed to be the classical corrugated flamelets regime. Furthermore, the DL instability significantly facilitates the propagation of expanding flames in medium and even intense turbulence. The development of DL cells is not suppressed by turbulence eddies, and it needs to be considered in turbulent combustion.  相似文献   

19.
In a context of growing concerns over climate change, aluminum has the potential to serve as a dense energy carrier in order to replace fossil fuels and reduce greenhouse gases emissions. Indeed, its combustion in air may provide carbon-free energy for applications in which a high-energy storage capacity is required. However, attempts of designing a metal-fueled combustor will conflict with a relatively large dispersion of the burning velocity values reported in the literature, even when similar powders are used. This uncertainty is partially due to the range of experimental conditions and techniques used on those previous studies. In the present work, an experimental Bunsen-type aluminum-air burner is introduced. It is shown that the setup is capable of generating stable dust suspensions under well-controlled conditions. The stabilized aluminum-air flames are studied using emission spectroscopy, Particle Image Velocimetry, laser sheet tomography, and direct visualization of the AlO(g) emissions. The measured burning velocities are then compared to previous results obtained for similar powders as a function of dust concentration. A reasonable agreement is obtained, and it is shown that metal flame tomography can yield a more precise indicator of the flame front position than AlO(g) emissions, helping to reduce the data scatter regarding dust-air burning velocities.  相似文献   

20.
A new flame-assisted spray pyrolysis (FASP) reactor design is presented, which allows the use of inexpensive precursors and solvents (e.g., ethanol) for synthesis of nanoparticles (10–20 nm) with uniform characteristics. In this reactor design, a gas-assisted atomizer generates the precursor solution spray that is mixed and combusted with externally fed inexpensive fuel gases (acetylene or methane) at a defined height above the atomizing nozzle. The gaseous fuel feed can be varied to control the combustion enthalpy content of the flame and onset of particle formation. This way, the enthalpy density of the flame is decoupled from the precursor solution composition. Low enthalpy content precursor solutions are prone to synthesis of non-uniform particles (e.g., bimodal particle size distribution) by standard flame spray pyrolysis (FSP) processes. For example, metal nitrates in ethanol typically produce nanosized particles by gas-to-particle conversion along with larger particles by droplet-to-particle conversion. The present FASP design facilitates the use of such low enthalpy precursor solutions for synthesis of homogeneous nanopowders by increasing the combustion enthalpy density of the flame with low-cost, gaseous fuels. The effect of flame enthalpy density on product properties in the FASP configuration is explored by the example of Bi2O3 nanoparticles produced from bismuth nitrate in ethanol. Product powders were characterized by nitrogen adsorption, X-ray diffraction, X-ray disk centrifuge, and transmission electron microscopy. Homogeneous Bi2O3 nanopowders were produced both by increasing the gaseous fuel content and, most notably, by cutting the air entrainment prior to ignition of the spray.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号