首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
采用基于密度泛函理论的第一性原理计算方法系统研究了氮、磷掺杂对硼烯/石墨烯异质结的几何结构和电子性质的影响.结果表明,相较完整硼烯/石墨烯异质结的金属特性,氮、磷掺杂的硼烯/石墨烯异质结均表现为半导体特性.室温下的分子动力学模拟进一步论证了相关体系的动力学稳定性.研究结果能够为硼烯/石墨烯异质结在新型二维半导体材料中的应用提供参考价值.  相似文献   

2.
刘梦溪  张艳锋  刘忠范 《物理学报》2015,64(7):78101-078101
石墨烯-六方氮化硼面内异质结构因可调控石墨烯的能带结构而受到广泛关注. 本文介绍了在超高真空体系内, 利用两步生长法在两类对石墨烯分别有强和弱电子掺杂的基底, 即Rh(111)和Ir(111)上制备石墨烯-六方氮化硼单原子层异质结构. 通过扫描隧道显微镜及扫描隧道谱对这两种材料的形貌和电子结构进行研究发现: 石墨烯和六方氮化硼倾向于拼接生长形成单层的异质结构, 而非形成各自分立的畴区; 在拼接边界处, 石墨烯和六方氮化硼原子结构连续无缺陷; 拼接边界多为锯齿形型, 该实验结果与密度泛函理论计算结果相符合; 拼接界面处的石墨烯和六方氮化硼分别具有各自本征的电子结构, 六方氮化硼对石墨烯未产生电子掺杂效应.  相似文献   

3.
在纳米逻辑器件中,制造低的肖特基势垒仍然是一个巨大的挑战.本文采用密度泛函理论研究了非对称氧掺杂对石墨烯/二硒化钼异质结的结构稳定性和电学性质的影响.结果表明石墨烯与二硒化钼形成了稳定的范德瓦耳斯异质结,同时保留了各自的电学特性,并且形成了0.558 eV的n型肖特基势垒.此外,能带和态密度数据表明非对称氧掺杂可以调控石墨烯/二硒化钼异质结的肖特基接触类型和势垒高度.当氧掺杂在界面内和界面外时,随着掺杂浓度的增大,肖特基势垒高度都逐渐降低.特别地,当氧掺杂在界面外时, n型肖特基势垒高度可以降低到0.112 eV,提高了电子的注入效率.当氧掺杂在界面内时, n型肖特基接触转变为欧姆接触.平面平均电荷密度差分显示随着掺杂浓度的增大,界面电荷转移数量逐渐增多,导致费米能级向二硒化钼导带底移动,证实了随着氧掺杂浓度增大肖特基势垒逐渐降低,并由n型肖特基向欧姆接触的转变.研究结果将对基于石墨烯的范德瓦耳斯异质结肖特基势垒调控提供理论指导.  相似文献   

4.
周骏  邸明东  孙铁囤  孙永堂  汪昊 《物理学报》2010,59(12):8870-8876
在异质结前界面缺陷态密度Dit1和异质结背界面缺陷态密度Dit2均取不同值时,对p型单晶硅(c-Si(p))为衬底的硅异质结太阳电池的衬底电阻率ρ与电池性能的关系进行了数值研究.结果表明:衬底电阻率的最优值ρop取决于前界面缺陷态密度Dit1,且ρop随着Dit1的增大而增大;当ρρop时,背界面缺陷态密度Dit2对衬底电阻率的可取值范围具有较大影响,Dit2越大衬底电阻率的可取值范围越小.  相似文献   

5.
考虑到空位缺陷的存在和原子非简谐振动,以铜、镍基外延石墨烯为例, 研究了金属基外延石墨烯空位缺陷浓度和态密度以及电导率随温度的变化规律,探讨了空位缺陷的影响。结果表明:(1) 空位缺陷浓度随温度升高而非线性增大,外延石墨烯的空位缺陷浓度及其随温度的变化率均大于石墨烯; (2) 与石墨烯相同,金属基外延石墨烯的态密度变化曲线对电子能量为0为对称,但空位缺陷的存在使态密度在电子能量为零时的值不为零,空位缺陷对导带态密度的影响大于价带;态密度随空位缺陷浓度的增大而线性减小,但减小幅度不大,而温度对石墨烯态密度几乎无影响;(3)金属基外延石墨烯的电导率近似等于电子声子相互作用贡献的电导率,并随温度升高而非线性减小;空位缺陷的存在使电导率有所减小,但只在较高温度下才明显。原子非简谐振动情况的电导率稍大于简谐近似的电导率,温度愈高,两者电导率的差愈大,即非简谐效应愈显著。  相似文献   

6.
Janus结构由于其两侧的原子不同,存在一个内建电场.在本工作中,将具有Janus结构的六角PdSSe与石墨烯复合,构成范德瓦尔斯异质结构.通过基于密度泛函理论的第一性原理计算对其几何结构和电子结构进行了研究.计算中考虑了两种堆叠方式,即Se侧与石墨烯接触和S侧与石墨烯接触.当S侧与石墨烯接触时,体系具有更小的平衡间距和更大的电荷转移,结合能更低. S侧与石墨烯接触时形成了为n型欧姆接触;Se侧与石墨烯接触时形成了势垒极低的n型肖特基接触.最后,讨论了垂直应变对接触特性的影响.通过施加垂直应变,PdSSe/石墨烯的接触类型具有显著的可调性.  相似文献   

7.
锂改性点缺陷石墨烯储氢性能的第一性原理研究   总被引:1,自引:0,他引:1  
本研究采用基于密度泛函理论的第一性原理方法计算了两种石墨烯点缺陷处原子的分波态密度(PDOS),能带结构和差分电荷密度等,研究了锂掺杂对两种本征石墨烯缺陷C-Bridge和C7557电子结构的改性,以及对其储氢能力的影响.结果表明Li原子能够稳定的掺杂且不易形成团簇,并且Li原子掺杂石墨烯能够对石墨烯能带中的狄拉克锥和费米面起到调控作用,增强了缺陷石墨烯的电子活性.本征缺陷石墨烯的储氢能力较弱,缺陷石墨烯的储氢能力可以通过Li掺杂来改善.  相似文献   

8.
本文采用孔洞缺陷来实现对二维石墨烯/氮化硼横向异质结热导率的调控.平衡态分子动力学(EMD)计算结果表明,界面孔洞的引入会降低二维石墨烯/氮化硼横向异质结的热导率.相较于有序的孔洞分布,无序的孔洞分布能够更有效地降低异质结的热导率,这一现象可通过声子安德森局域化来解释.孔洞缺陷的存在导致声子的频率和波失发生变化,从而使声子散射变得更加频繁,孔洞随机分布时,则导致声子波在材料中发生多次反射和散射,最终形成局域振动模式.本研究揭示了孔洞缺陷降低二维石墨烯/氮化硼横向异质结热导率的物理机制,对二维热电材料的结构设计有一定的指导意义.  相似文献   

9.
氮原子掺杂石墨烯对基于石墨烯的器件和催化研究具有重要的应用价值.本文采用基于密度泛函理论的计算方法,研究了氮原子修饰的C-Bridge(碳原子吸附在石墨烯碳碳键桥位)、C-Top(碳原子吸附在石墨烯一个碳原子上方)和C7557(碳原子对吸附在石墨烯碳环上方)三种不同点缺陷类型的石墨烯物理性质.讨论不同缺陷石墨烯结构在用氮原子进行修饰前后体系的稳定性、电子结构等;计算得到了缺陷处原子的分波态密度(PDOS)图,分析了原子间的相互作用;模拟出氮原子修饰后缺陷石墨烯恒流模式的STM图像,以便和实验上得出的图像进行对比.计算结果表明,对于所选取的三种不同缺陷,氮原子能够较稳定地吸附在缺陷表面.C-Bridge和C-Top缺陷结构本身具有磁矩,经氮原子修饰后结构磁矩消失.与之相反,C7557缺陷结构本身没有磁矩,经氮原子修饰后缺陷体系带有磁矩.另外,C-Bridge和CTop两种不同缺陷结构石墨烯经过氮原子修饰后,体系几何结构变得完全一样.  相似文献   

10.
利用平面波超软赝势方法研究了B/N原子单掺杂和共掺杂对双层石墨烯电子特性的影响.对掺杂双层石墨烯进行结构优化,并计算了能带结构、态密度、分波态密度等.分析表明,层间范德瓦尔斯相互作用对双层石墨烯的电子特性有比较明显的影响;B/N原子单掺杂分别对应p型和n型掺杂,会使掺杂片层的能带平移,使得体系能带结构产生较大分裂;双层掺杂的石墨烯能带结构与掺杂原子的相对位置和距离有关,对电子特性有明显的调控作用.其中特别有意义的是,B/N双层共掺杂在不同位置情况下会得到金属性或禁带宽度约为0.3 eV的半导体能带.  相似文献   

11.
一维光子晶体缺陷模激光器的放大特性   总被引:10,自引:0,他引:10  
光子晶体中引入缺陷后将形成缺陷模,这些缺陷模在增益介质中将被放大形成激光。基于麦克斯韦方程和速率方程相结合的模型,用时域有限差分法(FDTD)计算和分析了一维单缺陷光子晶体激光器中缺陷模的空间分布和频谱特性,以及这些缺陷模的放大特性,主要研究了缺陷层的厚度、晶体层数对缺陷模放大特性的影响。模拟结果显示,类似于传统激光腔的腔模,这些缺陷模能够被放大,形成激光。调整缺陷层的厚度、晶体层数等结构参量,将改变缺陷模的谐振,激射频率以及空间分布,这将直接影响激射阈值和饱和特性。增加晶体的层数,激光器的阈值将降低,饱和值将增加,但晶体层数增加到一定限度时,这种增减趋势变弱。模拟结果证明了有效层数的存在。  相似文献   

12.
In this work we demonstrate that the room-temperature deposition of the organic molecule 9,10-phenanthrenequinone (PQ) reduces the surface defect density of the silicon (100) surface by chemically bonding to the surface dangling bonds. Using various spectroscopic measurements we have investigated the electronic structure and band alignment properties of the PQ/Si interface. The band-bending at the PQ-passivated silicon surface is negligible for both n- and p-type substrates, demonstrating a low density of surface defects. Finally we show that PQ forms a semiconducting wide-bandgap type-I heterojunction with silicon.  相似文献   

13.
磁场下半导体GaAs/AlxGa1-xAs异质结中的杂质态   总被引:5,自引:2,他引:3  
张敏  班士良 《发光学报》2004,25(4):369-374
对异质结势采用三角势近似,考虑屏蔽效应,用变分法讨论磁场下半导体异质结系统中的施主杂质态,数值计算了GaAs/AlxGa1-xAs单异质结系统中杂质态结合能随磁场的变化关系。结果表明,由于外界磁场使界面附近束缚于正施主杂质的单电子波函数的定域性增强,从而对杂质态的结合能有明显的影响,结合能随磁感应强度的增强而显著增大。还计算了杂质位置、电子面密度产生的导带弯曲以及屏蔽效应诸因素对结合能的影响。结果显示,结合能对电子面密度和杂质位置的变化十分敏感,屏蔽则使得有效库仑吸引作用减弱而导致结合能明显下降。  相似文献   

14.
The features of energetics and electronic properties of carbon nanotubes, containing a pentagon-heptagon pair (5/7) topological defect in the hexagonal network of the zigzag configuration, are investigated using the extended Su-Schriffer-Heeger model based on the tight binding approximation in real space. Our calculations show that this pentagon-heptagon pair defect in the nanotube structures is not only responsible for a change in nanotube diameter, but also governs the electronic behaviour around Fermi level. Furthermore, we have calculated the densities of states of the (9,0)-(8,0) and (8,0)-(7,0) systems. For the (9,0)-(8,0) system, a narrow gap exists in the vicinity of the Fermi energy. In contrast, for the (8,0)-(7,0) system, a little peak of the density of states occurs at the Fermi energy. These can be attributed to the addition of a pair of pentagon-heptagon defects in the interface between two isolated carbon nanotubes.  相似文献   

15.
由于MnBi2Te4电子结构具有对晶格常数的改变相当敏感的特性,本文采用基于密度泛函理论的第一性原理方法对MnBi2Te4反铁磁块体的电子结构施加等体积应变调控.研究发现体系能带结构在材料等体积拉伸和压缩作用下变化灵敏,体系出现绝缘体-金属相变.特别地,当施加特定应变后导带和价带在Γ处出现交叉,体系呈零带隙状态.在此应变下仍可观察到能带反转的现象,具有非平庸的能带拓扑性质.根据不同应变下的电荷密度图,发现等体积应变会影响体系七倍层层间距,其中等体积压缩和拉伸应变可分别增大和减小Te原子层间距,表明等体积压缩有利于降低反铁磁层间耦合.通过等体积压力应变调控,掌握了MnBi2Te4的电子结构的变化规律,这对本征磁性拓扑绝缘体MnBi2Te4的物性研究和实验制备具有重要的指导意义.  相似文献   

16.
The influence of boron and nitrogen vacancies and divacancies on the electronic structure of a hexagonal boron nitride h-BN monolayer is studied. In the presence of vacancies in the structure, the introduced states appear in the forbidden band. The position of an introduced state with respect to the upper occupied level and the lower vacant level depends on deformation. Calculations show that, depending on the defect type and the magnitude of the applied deformation, the introduced state can be both localized and not localized on atoms surrounding the defect. When the state is localized in the system, the inhomogeneous distribution of the spin density is observed, resulting in the appearance of the magnetic moment in the system.  相似文献   

17.
采用基于密度泛函理论的第一性原理方法研究了三斜结构FeVO_4的结构,基态的能带结构、总态密度和分波态密度.将FeVO_4非共线的螺旋磁结构简化为六种不同的反铁磁结构,通过比较不同自旋构型的总能确定了基态磁结构.能带计算和总态密度结果均显示FeVO_4是能隙为2.19 e V的半导体,与实验结果相符.考虑Fe原子的在位库仑能,FeVO_4的能带结构和态密度都发生变化,说明FeVO_4晶体是一个典型的强关联电子体系.  相似文献   

18.
The electronic structure of CaFe2As2, a parent compound of iron-based superconductors, is studied with high-resolution angle-resolved photoemission spectroscopy. The electronic structure of CaFe2As2 in the paramagnetic state is consistent with that of density-functional theory calculations. We show that the electronic structure of this compound is significantly reconstructed when entering the spin density wave state. We could resolve two hole-like pockets and four electron-like pockets around the (0, 0) point, and one electron-like pocket surrounded with a pair of electron- and hole-like pockets around the (π, π) point in the spin density wave state. Therefore, the complicated Fermi surface topology and electronic structure near Fermi surface of CaFe2As2 illustrate that there exists unconventional electronic reconstruction in the spin density wave state, which cannot be explained by the band folding and Fermi surface nesting pictures.  相似文献   

19.
利用基于密度泛函理论的第一性原理计算方法, 研究了应变和C原子掺杂对单层BN纳米片的电子结构和磁学性质的影响. 计算结果表明未掺杂的单层BN纳米片具有宽的直接带隙, 在压缩和拉伸应变的作用下, 带隙会分别增大和减小, 但应变对带隙的调制整体效果不太明显. 单个C原子掺入BN纳米片的态密度揭示体系呈现出半金属性(Half-metallicity), 磁矩主要源于C 2p态, 而B 2p和N 2p态在极化作用下也能提供部分磁矩. 两个C原子掺入BN纳米片时, 磁性基态会随着C原子的间距发生变化: 当两C原子为最近邻(nn)和次近邻(nnn)时, 反铁磁态为磁性基态; 而当两C原子为次次近邻(nnnn)时, 铁磁态为基态, 并且其态密度也显示出半金属性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号