首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Pure and Li2O-doped CuO/CeO2 catalysts calcined at 500 °C were prepared by impregnation method. The catalysts are characterized by DTA, TG-DTG, XRD, IR, TEM, nitrogen adsorption at −196 °C and the catalytic decomposition of hydrogen peroxide at 30 °C.The effects of molar ratio, heat treatment time and the doping on the structural, surface and catalytic properties of nanocrystalline Cu/Ce-mixed oxides system have been studied. It was found that the catalytic activity of ceria-supported copper oxide catalysts increased by increasing both the heat treatment time and dopant content. However, the pure Cu/Ce-mixed oxide solids containing 10 wt.% CuO exhibited the best performance. The characterization results indicated that the higher surface area, the formation of solid solution between copper and cerium oxides, and the high dispersion of copper species on the ceria were responsible for the high catalytic activity of the CuO/CeO2 catalysts.  相似文献   

2.
In this work, three kinds of metalloporphyrins (CoPs, FePs, and MnPs) were immobilized on the grafting particles P(4VP-co-St)/SiO2 through the axial coordination reaction, respectively, and the supported biomimetic catalysts MP-P(4VP-co-St)/SiO2 (M = Co, Fe and Mn) were prepared. The catalytic performances of various supported biomimetic catalysts for the oxidation of phenylethane in the absence of any reductant and solvent were investigated and compared detailedly. The experimental results show that the supported catalysts MP-P(4VP-co-St)/SiO2 can effectively activate dioxygen, and obviously catalyze the oxidation of phenylethane to hypnone. When MPs are immobilized on the supports P(4VP-co-St)/SiO2, the catalytic activity of MP-P(4VP-co-St)/SiO2 is improved greatly. Also the catalytic activities of MP-P(4VP-co-St)/SiO2 differ among the different metals, according to the following series: Co(II) > Fe(III) > Mn(III). Under the reaction conditions of 393 K and the ordinary pressure of oxygen, the catalyst CoP-P(4VP-co-St)/SiO2 gave wonderful results with 24 mol% yield and 95% selectivity to the main product hypnone, and the another product, α-phenylethanol was few. All these results indicate that the grafting particles P(4VP-co-St)/SiO2 can not only protect metalloporphyrin from oxidation, but also promote it to activate O2. Additionally, some rules were specially found in the studies: (1) CoPs as a biomimetic catalyst had an optimum used amount, and excess addition would make the catalyst activity worse; (2) the immobilization density of CoPs on P(4VP-co-St)/SiO2 surface still had the high-point; (3) the catalyst activity trended to steady during nine cycle.  相似文献   

3.
In this paper, poly(4vinylpyridine-co-styrene) (P(4VP-co-St)) was grafted on silica gel particles in the manner of “grafting from”, and the grafting particle P(4VP-co-St)/SiO2 was gained. The grafting particle P(4VP-co-St)/SiO2 is a novel kind of supports for immobilizing metalloporphyrin catalysts. Then, the immobilization of cobalt tetraphenylporphyrin (CoTPP) on the supports P(4VP-co-St)/SiO2 was carried out via the axial coordination reaction between CoTPP and the pyridine groups of the grafted P(4VP-co-St), resulting in the heterogenised catalysts CoTPP-P(4VP-co-St)/SiO2. The synthesized catalysts were characterized by FTIR and the axial coordination process between CoTPP and the grafted P(4VP-co-St) was confirmed by UV-vis. The effects of various factors on the immobilization reaction of CoTPP were studied in detail. Finally, the catalytic performance of CoTPP-P(4VP-co-St)/SiO2 in the catalytic oxidation process of ethyl benzene was investigated. The experimental results show that the axial coordination reaction is a very easy and novel method for favorably immobilizing CoTPP onto the P(4VP-co-St)/SiO2 surfaces. During the immobilization process of CoTPP on P(4VP-co-St)/SiO2, the most bonding amount of CoTPP (0.19 g/g) is obtained under the lower temperature (5 °C) and the higher concentration of CoTPP(6.0 mg/ml) lasting 4 h. Moreover, the supported catalyst CoTPP-P(4VP-co-St)/SiO2 can effectively activate the dioxygen, and obviously catalyze the transform of ethylbenzene into acetophenone. So it exhibits the fine catalytic activity.  相似文献   

4.
A series of Ce1−xCuxO2 nanocomposite catalysts with various copper contents were synthesized by a simple hydrothermal method at low temperature without any surfactants, using mixed solutions of Cu(II) and Ce(III) nitrates as metal sources. These bimetal oxide nanocomposites were characterized by means of XRD, TEM, HRTEM, EDS, N2 adsorption, H2-TPR and XPS. The influence of Cu loading (5-25 mol%) and calcination temperature on the surface area, particle size and catalytic behavior of the nanocomposites have been discussed. The catalytic activity of Ce1−xCuxO2 nanocomposites was investigated using the test of CO oxidation reaction. The optimized performance was achieved for the Ce0.80Cu0.20O2 nanocomposite catalyst, which exhibited superior reaction rate of 11.2 × 10−4 mmol g−1 s−1 and high turnover frequency of 7.53 × 10−2 s−1 (1% CO balanced with air at a rate of 40 mL min−1, at 90 °C). No obvious deactivation was observed after six times of catalytic reactions for Ce0.80Cu0.20O2 nanocomposite catalyst.  相似文献   

5.
Novel egg-shell structured monometallic Pd/SiO2 and bimetallic Ca-Pd/SiO2 catalysts were prepared by an impregnation method using porous hollow silica (PHS) as the support and PdCl2 and Ca(NO3)2·4H2O as the precursors. It was found from transmission electron microscope (TEM), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) that Pd was loaded on PHS with a particle size of 5-12 nm in Pd/SiO2 samples and the Pd particle size in Ca-Pd/SiO2 was smaller than that in Pd/SiO2 since Ca could prevent Pd particles from aggregating. X-ray photoelectron spectroscopy (XPS) analyses exhibited that Pd 3d5/2 binding energies of Pd/SiO2 and Ca-Pd/SiO2 were 0.2 and 0.9 eV lower than that of bulk Pd, respectively, as a result of the shift of the electron cloud from Pd to oxygen in Pd/SiO2 and to both oxygen and Ca in Ca-Pd/SiO2. The activity of Ca-Pd/SiO2 egg-shell catalyst for CO hydrogenation and the selectivity to methanol, with a value of 36.50 mmolCO mol−1Pd s−1 and 100%, respectively, were much higher than those of the catalysts prepared with traditional silica gel as the support, owing to the porous core-shell structure of the PHS support.  相似文献   

6.
Nanosized ZSM-5 type ferrisilicates were successfully prepared using hydrothermal process. Several parameters including gel initiative compositions (Na+ or K+ alkali system), SiO2/Fe2O3 molar ratios and hydrothermal temperature were systematically investigated. The samples were characterized by XRD, TEM, SEM-EDS, BET surface area and ICP techniques. It was found that surface areas and the total pore volume increase with increasing in the SiO2/Fe2O3 molar ratio at Na-FZ ferrisilicates. The catalytic performance of the synthesized catalysts was evaluated in ethylbenzene dehydrogenation to styrene in the presence of N2O or steam at temperatures ranging from 400 °C to 660 °C under atmospheric pressure. The effects of gel initiative compositions, SiO2/Fe2O3 molar ratio as well as the hydrothermal synthesis temperature on the catalytic performance of these catalysts have been addressed. It was shown that styrene yield significantly influenced by altering in the SiO2/Fe2O3 ratio but was not greatly influenced by changes in hydrothermal synthesis temperatures. The comparison between performance of potassium and sodium containing catalysts was shown that the one with potassium has higher yield and selectivity toward styrene production at an optimum temperature of 610 °C.  相似文献   

7.
Highly ordered mesoporous Co3O4, NiO, and their metals were synthesized by nanocasting method using there corresponding mesoporous SBA-15 silica as a template. The obtained porous metal oxides have high surface areas, large pore volume, and a narrow pore size distribution. The N2-adsorption data for mesoporous metal oxides have provided the BET area of 257.7 m2 g−1 and the total pore volume of 0.46 cm3 g−1. The mesoporous metals were employed as a catalyst in the synthesis of (S)-3-pyrrolidinol from chiral (S)-4-chloro-3-hydroxybutyronitrile, and a high yield to (S)-3-pyrrolidinol-salt was obtained on the mesoporous Co metal catalyst.  相似文献   

8.
Xin Jiang  Hui Deng 《Applied Surface Science》2011,257(24):10883-10887
Au-CeO2/SiO2 was prepared via adsorbed-layer reactor technique combined with alcohol-thermal treatment. The catalytic performance in complete oxidation of benzene was investigated. TEM, Raman characterization showed that Au particles grew up obviously during alcohol-thermal process, while CeO2 particles maintained 4 nm in diameter. The content of oxygen vacancies and adsorbed oxygen species on catalysts surface increased apparently. Alcohol-thermally treated Au-CeO2/SiO2 and CeO2/SiO2 showed similar change in catalytic performance, and were much superior to calcined CeO2/SiO2. Of alcohol-thermally treated and calcined CeO2/SiO2, initial temperatures of the reaction were 80 °C and 150 °C, respectively. The benzene conversions reached 85% and 40% at 300 °C.  相似文献   

9.
Four different Pt/ZrO2/(C/)SiO2 model catalysts were prepared by electron beam evaporation. The morphology of these samples was examined before and after the catalytic reaction by Rutherford back-scattering (RBS), transmission electron microscopy (TEM) and grazing-incidence small-angle scattering (GISAXS). The catalytic behavior of such model catalysts was compared to a conventional Pt/ZrO2 catalyst in the CO oxidation reaction using different oxygen excess (λ = 1 and 2). The so-called material gap was observed: model catalysts were active at higher temperature (620-770 K) and resulted in higher activation energy values (Ea = 77-93 kJ mol−1 at λ = 1 and 129-141 kJ mol−1 at λ = 2) compared to the powdered Pt/ZrO2 catalyst (370-470 K, Ea = 74-76 kJ mol−1). This material gap is discussed in terms of diffusion limitations, reaction mechanism and apparent compensation effect. Diffusion processes seem to limit the reaction on planar samples in the reactor system that was shown to be appropriate for the evaluation of the catalytic activity of powder samples. Kinetic parameters obeyed the so-called apparent compensation effect, which is discussed in detail. Langmuir-Hinshelwood-type of reaction, between COads and Oads, was proposed as the rate-determining step in all cases. Pt particles deposited on planar structures can be used for modeling conventional powdered catalysts, even though some limitations must be taken into account.  相似文献   

10.
Y-junction carbon nanotubes were grown by catalytic CVD of methane at 700 °C on NiO-CuO-MoO(7:2:1) (w/w/w)/SiO2 catalyst. For comparison, NiO-CuO(8:2) (w/w)/SiO2 and NiO-MoO(8:2) (w/w)/SiO2 catalysts were tested for carbon nanotube formation. TEM analysis indicates that no Y-junction structures were formed with the latter two catalysts. This finding elucidates why the addition of a small amount of MoO to NiO-CuO/SiO2 catalyst is crucial for enhancing the formation of Y-junction carbon nanotubes.  相似文献   

11.
A combination of in situ X-ray photoelectron spectroscopy analysis and ex situ scanning electron- and atomic force microscopy has been used to study the formation of copper islands upon Cu deposition at elevated temperatures as a basis for the guided growth of copper islands. Two different temperature regions have been found: (I) up to 250 °C only close packed islands are formed due to low diffusion length of copper atoms on the surface. The SiO2 film acts as a barrier protecting the silicon substrate from diffusion of Cu atoms from oxide surface. (II) The deposition at temperatures above 300 °C leads to the formation of separate islands which are (primarily at higher temperatures) crystalline. At these temperatures, copper atoms diffuse through the SiO2 layer. However, they are not entirely dissolved in the bulk but a fraction of them forms a Cu rich layer in the vicinity of SiO2/Si interface. The high copper concentration in this layer lowers the concentration gradient between the surface and the substrate and, consequently, inhibits the diffusion of Cu atoms into the substrate. Hence, the Cu islands remain on the surface even at temperatures as high as 450 °C.  相似文献   

12.
Ternary systems at various compositions were synthesized by coprecipitating Zr and Ti (to get a ZrO2-TiO2 40-60 mol%) chlorides in aqueous basic media (provided by urea thermal decomposition) over an alumina substrate. Materials characterization included N2 physisorption, X-ray diffraction, thermal analysis, high-resolution electron microscopy and Raman and UV-vis spectroscopies. High interaction among components was clearly evidenced by various techniques. Textural properties of ternary oxides could be tuned depending on composition of formulations. Mixed oxides with 10 or 20 mol% of ZrO2-TiO2 (at 40-60% mol, in turn) had the most suitable combination of textural properties (surface area, average pore diameter and pore volume) for the intended application (support of catalyst for hydrodesulfurization de oil-derived middle distillates). The suitability of those ternary supports was demonstrated in the dibenzothiophene hydrodesulfurization where the corresponding supported MoS2 catalysts (at 2.8 atom Mo nm−2) were much more active (on a per mass of catalyst basis) than when impregnated over either alumina or zirconia-titania oxides.  相似文献   

13.
Four NiMo catalyst supported on Al2O3 with different textural properties have been studied in the hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrodearomatization (HDA) of a Mexican straight run gasoil (SRGO). All reactions were carried out at three different temperatures 613, 633, and 653 K. Alumina supports were analysed by pyridine FTIR-TPD and nitrogen physisorption in order to determine their surface acidity and textural properties, respectively. TPR studies of the NiMo catalysts were analysed to correlate their hydrogenating properties. Metallic particles were characterized (after sulfidation) using transmission electron microscopy (TEM). Catalytic activities are discussed in relation to the physicochemical properties of NiMo catalysts. The importance of textural properties on coke deposition has been emphasized. The results of catalytic activity of these materials varied depending on dispersed MoS particles and pore distribution in final catalysts. The optimum pore diameter was found around 80 Å for HDS and HDN.  相似文献   

14.
Multi-walled carbon nanotubes (MWCNTs) supported Cu-Ni bimetallic catalysts for the direct synthesis of dimethyl carbonate (DMC) from CH3OH and CO2 were synthesized and investigated. The supporting materials and the synthesized catalysts were fully characterized using FTIR, scanning electron microscopy (SEM), transmission electron microscopy (TEM), temperature-programmed reduction (TPR), X-ray diffraction (XRD) and X-ray photoelectron spectrum (XPS) techniques. The catalytic activities were investigated by performing micro-reactions. The experimental results showed that the metal phase and Cu-Ni alloy phase in the catalyst were partially formed during the calcination and activation step. Active metal particles were dispersed homogeneously on the surface of the MWCNTs. Cu-Ni/MWCNTs catalysts were efficient for the direct synthesis of DMC. The highest conversion of CH3OH was higher than 4.3% and the selectivity of DMC was higher than 85.0% under the optimal catalytic conditions of 120 °C and around 1.2 MPa. The high catalytic activity of Cu-Ni/MWCNTs in DMC synthesis can be attributed to the synergetic effects of metal Cu, Ni and Cu-Ni alloy in the activation of CH3OH and CO2, the unique structure of MWCNTs and the interaction between the metal particles and the supports.  相似文献   

15.
Gold in contact with silicon substrates Si(1 0 0), Si(1 1 1), and SiO2 is studied by thermal evaporation and annealing in N2 using the modified sphere-plate technique. The final orientation distribution of crystalline Au films grown on Si substrate systems that incorporate a native amorphous oxide layer of silica and Au on amorphous silica (SiO2 glass) substrates is influenced by preferred orientations and twinning. Experimental evidence suggests that the orientation of Au{1 1 1} close packed planes (multiply twinned) was found to be of low-energy as the annealing temperature was increased to 530 °C and 920 °C. Additional orientations were observed for Au{1 0 0} on Si(1 0 0) substrates and Au{1 0 0}, {1 1 0}, and {3 1 1} on SiO2 substrates. After annealing at 920 °C the size distribution of the gold particles was determined to be within the range of 20-800 nm while the morphology of gold surface appears spherical to faceted in character. These results show similarities to recent findings for smaller nano-size 1D particles, islands and thin Au films on silicon annealed over lower temperature ranges.  相似文献   

16.
A novel copper and sulfur codoped TiO2 photocatalyst was synthesized by modified sol-gel method using titanium(IV) isopropoxide, CuCl2·2H2O and thiourea as precursors. The samples were characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), scanning electron microscopy equipped with energy dispersive X-ray micro-analysis (SEM-EDX), transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) analysis. The XRD results showed undoped and Cu,S-codoped TiO2 nanoparticles only include anatase phase. Effect of calcination temperature showed rutile phase appears in 650 and 700 °C for undoped and 0.1% Cu,S-codoped TiO2, respectively. The SEM analysis revealed the doping of Cu and S does not leave any change in morphology of the catalyst surface. The increase of copper doping enhanced “red-shift” in the UV-vis absorption spectra. The TEM images confirmed the dopants suppressed the growth of TiO2 grains. The photocatalytic activity of samples was tested for degradation of methyl orange (MO) solutions. The results showed photocatalytic activity of the catalysts with 0.05% Cu,0.05% S and 0.1% Cu,0.05% S were higher than that of other catalysts under ultraviolet (UV) and visible irradiation, respectively. Because of synergetic effect of S and Cu, the Cu,S-codoped TiO2 catalyst has higher activity than undoped and Cu or S doped TiO2 catalysts.  相似文献   

17.
常规方法制备的草酸二甲酯加氢催化剂活性和选择性较差,通过化学还原沉积法制备了Cu-B/γ-Al2O3、Cu-B/SiO2非晶态合金催化剂并进行了XRD、TDA的表征。在2.0MPa,摩尔氢酯比50:1,体积空速2h-1,反应温度200℃时进行催化剂评价。结果表明,Cu-B/γ-Al2O3、Cu-B/SiO2非晶态合金催化剂的活性和选择性较好,显示出良好的应用前景。  相似文献   

18.
A series of CuO/CeO2 catalysts with different Cu-Ce compositions were synthesized by co-precipitation method and characterized by X-ray diffraction, H2-TPR, CO-TPD, SEM and X-ray photoelectron spectroscopy (XPS) techniques. The effects of Cu-Ce composition and water vapor on the catalytic properties for the selective CO oxidation in the hydrogen-rich gas were investigated. The results indicated that CuO (10%)/CeO2 catalyst remained the maximum CO conversion and selectivity at 140 and 160 °C, while the performance of CuO/CeO2 catalysts deteriorated with the CuO molar ratio further increased. The interfacial CuO and CeO2 interaction and synergistic effect enhanced the redox properties of CuO/CeO2 catalyst and the highly dispersed copper species were proposed as the active sites for the selective CO oxidation. The blockage of catalytic active sites by absorbed water and the formation of CO-H2O surface complexes reduced the activity of CuO (10%)/CeO2 catalyst. The decreasing of surface lattice oxygen and absorbed oxygen species and the agglomeration of copper particles were the plausible interpretations for the deactivation of CuO (10%)/CeO2 catalyst.  相似文献   

19.
No-noble metal CeO2-TiO2 catalysts prepared by sol-gel method were developed and examined for catalytic wet air oxidation (CWAO) of acetic acid. The structure of the catalysts was measured by BET, SEM, XRD, XPS and DTA-TG. We investigated the effect of the interactions of Ce and Ti on the structure of CeO2-TiO2 catalysts. The mechanisms of the relationships between the different content of Ti and the activity of CeO2-TiO2 catalysts were discussed. The results showed that the average crystal size of CeO2 decreased and the surface areas increased; the low valence of Ce3+ increase, and the chemisorbed oxygen slightly decreased with the increase of Ti content on the surface of CeO2-TiO2 catalysts. The order of the activity in CWAO of acetic acid followed: Ce/Ti 1/1 > Ce/Ti 3/1 > Ce/Ti 1/3 > Ce/Ti 5/1 > CeO2 > TiO2 > no catalyst. In CWAO of acetic acid, the optimal atomic ratio of Ce and Ti was 1, and the highest COD removal was over 64% at 230 °C, 5 MPa and 180 min reaction time over Ce/Ti 1/1 catalyst. The excellent activity and stability of CeO2-TiO2 catalysts was observed in our study.  相似文献   

20.
The gas-phase hydrogenolysis of methylcyclopentane (MCP) was investigated over the bimetallic Ir-Au/γ-Al2O3 catalysts. The bimetallic systems containing the atomic Au/Ir ratios in the range of 0.125-8 and a fixed total metal content of 8 wt.%, were prepared by the sequential impregnation (SI) and co-impregnation (CI) methods. The corresponding monometallic Ir/γ-Al2O3 and Au/γ-Al2O3 catalysts were also prepared. The materials were characterized by ICP, XRD, N2 adsorption, TEM, and H2 chemisorption. Highly dispersed Ir nanoparticles were obtained in all cases, while the size of Au nanoparticles increased (up to 50 nm) upon the increasing Au content in the catalyst. The monometallic gold catalyst did not adsorb H2. The incorporation of Au increased the amount of irreversible adsorbed H2 in the Ir-Au/γ-Al2O3 catalysts with respect to the monometallic ones. The products obtained in the MCP hydrogenolysis were 2-methylpentane (2-MP), 3-methylpentane (3-MP) and n-hexane (n-H). The initial rate (molecules of MCP reacted s−1 gIr−1) increased with the Au content. The deactivation was lower for bimetallic catalysts, particularly for the CI ones. The addition of Au played a significant effect on chemisorption and catalytic properties of Ir.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号