首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
弱耦合封闭声腔的声辐射模态理论与计算   总被引:2,自引:1,他引:1       下载免费PDF全文
有源结构声控制是耦合封闭声腔的声辐射控制的有效方法。在此前的研究中有学者提出了"耦合封闭声腔的声辐射模态"概念,但其在概念和应用上均存在不便之处:其定义实质上是结构模态幅值的一组基函数,这与自由空间内声辐射模态是结构表面法向振速或声压的一组基函数的物理意义并不一致;另一方面,在计算和利用其进行控制时仍然需要用到结构模态,而在实际中辐射结构有用的结构模态信息难以准确、方便地得到。为了解决这些问题,类比自由空间声辐射模态理论,将声势能直接表示为结构表面法向振速的二次型形式,提出了新的结构向耦合封闭声腔的声辐射模态计算方法,并从理论上证明了当耦合面均匀离散时,在一定的条件下,可以简单地利用声腔模态投影向量代替耦合封闭声腔的声辐射模态,从而有效地节约计算资源。通过理论研究,形成了与自由空间内相统一、便于应用的耦合封闭声腔声辐射模态理论,数值计算案例表明,所提出的理论方法可以极大方便耦合封闭声腔的声辐射计算及其有源结构声控制。  相似文献   

2.
通过压电式传感器进行简支梁声辐射有源控制   总被引:16,自引:0,他引:16  
以简支梁为例,通过声辐射模态研究简支梁声辐射的有源控制。由于在中、低频时,声辐射模态对应的辐射效率随着模态阶数的增加而迅速降低。本文提出了一种新的控制策略,即通过设计特定形状的PVDF作为传感器来测量前L阶声辐射模态的伴随系数,使前L阶声辐射模态的声功率最小化。最后通过数值计算研究了控制力和传感器数目对控制效果的影响。  相似文献   

3.
弹性结构封闭空间有源消声   总被引:1,自引:0,他引:1  
本文研究了外力激励弹性结构条件下封闭空间有源消声问题。首先根据声弹性理论,提出分步代入法求解初、次级声场,然后以矩形空间为例,研究了不同介质条件下有源消声规律。结果表明:对于弹性结构封闭空间有源消声,当结构一声腔耦合较弱时,次级声源基本上只能抵消声腔模态;当结构一声腔耦合较强时,次级声源不仅能抵消声腔模态,而且对抵消与声腔模态耦合良好的结构模态辐射声也有作用。最后,以有限长圆柱封闭空间为模型,完成了结构受点力激励,腔内为空气介质和水介质条件下的单次级声源有源消声实验。验证了理论结果。  相似文献   

4.
结构声辐射的振动模态分析和声辐射模态分析研究   总被引:21,自引:0,他引:21  
基于辐射声功率的二次型表达式,采用有限元法、Rayleigh积分和边界元法对结构声辐射进行了振动模态分析和声辐射模态分析研究。振动模态间的耦合对辐射声功率影响的研究表明: 结构各阶振动模态自身对结构辐射声功率的贡献是增大结构的辐射声功率,而振动模态间的耦合可能会增大结构辐射声功率,也可能会减小结构辐射声功率,或对辐射声功率没有影响。而且,当振动模态间的耦合作用对辐射声功率的影响不大时,采用振动模态控制可取得较好的减振降噪双重控制效果。将混合的Helmholtz积分方程方法用广义逆引入到三维复杂结构声辐射分析的声辐射模态公式中,解决了特征频率下解不唯一问题。还研究了正方形封闭空间结构声辐射模态的辐射效率和形状,并对结构声辐射的振动模态控制和声辐射模态控制进行了讨论。  相似文献   

5.
基于近场声压传感的结构声辐射有源控制   总被引:14,自引:4,他引:10  
为了解决有源声学结构中误差信息的传感问题,提出利用近场声压估算结构声辐功率的方法。首先推导了基于近场声压的声辐射功率计算公式,然后针对单频和宽带辐射噪声,提出了不同的有源控制目标函数,推粤了相应的计算有源控制效果的公式,并借助计算机仿真研究了影响有源控制效果的各种因素。最后探讨了实际条件下实现有源控制误差信息传感的各种方法。结果表明:有限阶声压辐射模态和近场均方声压都可以作为自适应声学结构的目标函数。  相似文献   

6.
通过声辐射模态研究结构声辐射的有源控制   总被引:24,自引:1,他引:23  
以简支平板为例,通过声辐射模态建立了弹性结构声辐射的有源主动控制策略。并分析了声辐射模态的数学和物理意义。研究发现在中、低频时,声辐射模态对应的辐射效率随着模态阶数的增加而迅速降低。在此基础上,本文提出了一种新的控制策略,即抵消前k阶声辐射模态的伴随系数,使得前k阶声辐射模态的声功率为零。本文以点力作动器作为控制力源进行了数值计算研究。  相似文献   

7.
分布式位移传感下的有源声学结构误差传感策略   总被引:3,自引:1,他引:3  
有源声学结构是近年来提出的一种控制结构低频声辐射的有效方案,它是智能结构在噪声控制领域中的具体应用,而实现该结构的关键问题之一是近场误差传感。本文提出将分布式位移传感材料PVDF敷设于有源声学结构初、次级板表面,用有限个PVDF、对测量辐射声功率实现有源声学结构的近场误差传感。论文首先建立了有源声学结构理论模型,然后基于声辐射模态概念和PVDF传感模型,推导了PVDF形状系数理论公式,最后用一系列的计算机仿真实例给出了初、次级板PVDF形状及有源控制效果,证明所提出的方案是有效的。  相似文献   

8.
针对板-腔耦合系统的声辐射模态(ARM)计算问题,提出了一种基于能量原理的声辐射模态计算方法,该方法从能量原理的动力学方程构建起声压模态幅值和结构模态幅值的关系,通过将声势能表示为结构模态幅值向量的二次型形式,得到板-腔耦合系统的声辐射模态,弥补了前人理论在解决声腔为阻抗壁面和结构-声为强耦合条件时的不足。通过数值算例验证了本文计算方法的正确性和有效性,在此基础上分析了壁面和结构-声耦合条件变化对声辐射模态特性的影响。结果表明:声辐射模态辐射效率曲线会在声腔模态频率处产生峰值,阻抗壁面的引入会降低声辐射模态辐射效率在峰值处的幅值,并且阻抗值越小,幅值衰减效应越明显,具体表现为声势能曲线在辐射效率峰值频率处幅值会下降;强耦合条件下低频段声势能响应主要由弹性板结构模态激发,响应峰值密度更高,幅值更低。低频同频宽的声辐射模态辐射效率峰值数更少,峰值频率更高。  相似文献   

9.
以简支矩形薄板为研究对象,首先在波数域内对结构振动体积速度与辐射声功率的关系进行分析,推导出反映结构模态对体积速度贡献规律的数学表达式。在此基础上,结合PVDF (Polyvinylidene Fluoride)压电薄膜的电荷输出方程,利用三角函数的正交性,给出一种方法来设计体积速度传感器,并针对具体模型进行了结构体积速度测量实验。结果表明,所设计的分布式体积速度传感器具有较好的传感精度。在此基础上,利用所设计的传感器进行了结构声辐射有源控制实验研究,分别针对单频和带宽信号激励情况下的有源控制实验取得了满意的控制效果,从而验证了本文PVDF体积速度传感器设计方法的正确性以及通过PVDF膜传感结构声辐射并作为误差传感器进行有源控制的有效性。   相似文献   

10.
复杂封闭空间结构声辐射的有源消声机制   总被引:3,自引:0,他引:3  
采用两种控制目标函数,通过比较控制前后两个弹性板及空腔内声压模态坐标幅值与相角的变化,分析了复杂封闭空间结构声辐射的有源消声机制.结果表明,在一般情况下,空腔内噪声的降低是由两个弹性板的模态重组来实现;当扰动频率为顶板的一个固有频率时,有源消声则由顶板模态幅值抑制和底板模态重组的共同作用来完成.  相似文献   

11.
The work proposed an optimization approach for structural sensor placement to improve the performance of vibro-acoustic virtual sensor for active noise control applications. The vibro-acoustic virtual sensor was designed to estimate the interior sound pressure of an acoustic-structural coupled enclosure using structural sensors. A spectral-spatial performance metric was proposed, which was used to quantify the averaged structural sensor output energy of a vibro-acoustic system excited by a spatially varying point source. It was shown that (i) the overall virtual sensing error energy was contributed additively by the modal virtual sensing error and the measurement noise energy; (ii) each of the modal virtual sensing error system was contributed by both the modal observability levels for the structural sensing and the target acoustic virtual sensing; and further (iii) the strength of each modal observability level was influenced by the modal coupling and resonance frequencies of the associated uncoupled structural/cavity modes. An optimal design of structural sensor placement was proposed to achieve sufficiently high modal observability levels for certain important panel- and cavity-controlled modes. Numerical analysis on a panel-cavity system demonstrated the importance of structural sensor placement on virtual sensing and active noise control performance, particularly for cavity-controlled modes.  相似文献   

12.
Active structural acoustic control(ASAC)is an efficient method in acoustic radiation control of coupled enclosure.In the past research of ASAC,the concept of "acoustic radiation mode(ARM)of coupled enclosure"was proposed,which was a set of basis functions of structural mode amplitude.However,there was an incompatibility with the ARM definition in free space radiation case which was a set of basic functions of normal velocity or pressure on the vibrating surface.Also,there was severe inconvenience for application as structural modes were required while accurate and useful structural modes were difficult to be extracted in practice.To overcome these problems,by analogy to ARM theory of free space,the acoustic potential energy was expressed in quadratic form of normal velocity on coupling surface and ARM of coupled enclosure was redefined.Furthermore,theoretic derivation showed that ARM of coupled enclosure could be replaced simply by corresponding acoustic mode projection of enclosure when the coupling surface was discretized into equal size elements.Therefore,the ARM theory of coupled enclosure which was consistent with that of free space and convenient for application was formed.Finally,numerical calculation was performed and the results proved that the presented theory was very efficient in ARM calculation of coupled enclosure and ASAC.  相似文献   

13.
In practical situations, large machinery is usually placed in an underwater vessel and changes the acoustic enclosure shape into an irregular one. The existence of machinery causes the difficulties in expressing sound transmission and radiation analytically. In this study, the sound radiation of a cylindrical shell excited by an internal acoustic source is modeled and analyzed. The cylindrical shell contains a machine modeled as a rectangular object, which is attached to a shell with a spring-mass system. The acoustic field of the cavity is computed by the integro-modal approach. The effect of object size on the coupling between acoustic mode and structural mode is investigated. The relationship between object volume and sound radiation is also studied. Numerical results show that the existence of objects inside vessels leads to a more effective coupling between the structure and acoustic enclosure than the existence of no objects in a regular-shaped cavity(i.e. empty vessel).  相似文献   

14.
A typical approach to active control of sound radiation or transmission from vibrating structures involves active structural acoustic control (ASAC) and active noise control (ANC), which introduce respectively force input and compacted sound source to apply on or be close to the vibrating structure. However, for the ASAC approach, arrangement for secondary force and error sensor is heavily dependent upon the properties of the primary structure and acoustical space; for the ANC approach, a large number of compacted secondary sources are required. Hence, in this paper, based on distributed secondary sound source and near-field error sensor, active acoustic structure is proposed to construct adaptive or smart structure as a versatile module or element for controlling sound radiation or transmission at low frequencies. First, a theoretical model based on a minimization of the total sound radiation from the primary and secondary panel is established, after which, taking into consideration the relationship between the vibration modes pattern and sound radiation characteristics for secondary panels, optimal arrangement for the secondary panels is examined in detail. Finally, a near-field pressure-based error sensing approach is presented, based on two kinds of object function, and active control of sound radiation is performed.  相似文献   

15.
Much of the research on sound transmission through the aircraft fuselage into the interior of aircraft has considered coupling of the entire cylinder to the acoustic modes of the enclosure. Yet, much of the work on structural acoustic control of sound radiation has focused on reducing sound radiation from individual panels into an acoustic space. Research by the authors seeks to bridge this gap by considering the transmission of sound from individual panels on the fuselage to the interior of the aircraft. As part of this research, an analytical model of a curved panel, with attached piezoelectric actuators, subjected to a static pressure load was previously developed. In the present work, the analytical model is extended to consider the coupling of a curved panel to the interior acoustics of a rigid-walled cylinder. Insight gained from an accurate analytical model of the dynamics of the noise transmission from the curved panels of the fuselage into the cylindrical enclosure of an aircraft is essential to the development of feedback control systems for the control of stochastic inputs, such as turbulent boundary layer excitation. The criteria for maximal structural acoustic coupling between the modes of the curved panel and the modes of the cylindrical enclosure are studied. For panels with aspect ratios typical of those found in aircraft, results indicate that predominately axial structural modes couple most efficiently to the acoustic modes of the enclosure. The effects of the position of the curved panel on the cylinder are also studied. Structural acoustic coupling is found to not be significantly affected by varying panel position. The impact of the findings of this study on structural acoustic control design is discussed.  相似文献   

16.
Both acoustic radiation modes and structural modes play an important role in the field of structure-borne sound, however, little work has been done for inherent relations between these two kinds of modes. This paper is focused on the relationship between the radiation modes and structural modes and its physical mechanisms. First, a governing equation for relating the radiation mode and structural mode is given based on the characteristics of the modes. Then, using the symmetric or anti-symmetric properties of two kinds of modes, the corresponding relations are presented. And then, numerical examples are given to verify the theoretical investigations, and it has been shown that, for a simply supported rectangular panel vibrating at low frequencies, the first radiation mode is dominant corresponding to (odd, odd) structural modes; the following radiation modes are respectively dominant corresponding to (even, odd), (odd, even), and (even, even) structural modes. Finally, such relations are applied to active acoustic structural control and provide a direct help for the design of active control strategy and arrangement of the secondary forces.  相似文献   

17.
This study attempted to control the radiated exterior noise from a rectangular enclosure in which an internal plate vibrates by acoustic excitation and noise is thus radiated from that plate. Multi-channel active control was applied to reduce the vibration and external radiation of this enclosed plate. A piezoelectric ceramic was used as a distributed actuator for multiple mode control of the vibration and radiated noise in the acoustically excited plate. To maximize the effective control, an approach was proposed for attachment the piezoelectric actuator in the optimal location. The plate and internal acoustic space in the enclosure are coupled with each other. This will change dominant frequency characteristics of the plate and, thus, those of the externally radiated noise. Active noise control was accomplished using an accelerometer attached to the plate and a microphone placed adjacent to that plate as an error sensor under acoustic excitation of sine wave and white noise. It was found that the control of radiated external radiation noise requires a microphone as an error sensor, a sound pressure sensor due to vibration of the plate, differences in the dominant frequency of externally radiated noise, and complex vibration modes of the plate.  相似文献   

18.
A new modeling method is developed in this paper for the active minimization of noise within a three-dimensional irregular enclosure using distributed lead zirconate titanate piezoelectric (PZT) actuators, and the control mechanisms for irregular enclosure are analyzed. The irregular enclosure is modeled with four rigid walls and two simply supported flexible panels, and PZT actuators are bound to one of the flexible panels. The process of the new modeling method is as follows. First, the modal coupling method is used to establish the motion equations, which contain important coefficients such as modal masses and modal coupling coefficients, etc., of acoustic-structural-piezoelectric coupling system. Then, the acoustic modes and the modal masses of irregular enclosure are calculated by numerical methods. Last, the modal coupling coefficients in motion equations are calculated according to the numerical results of the acoustic modes of irregular enclosure and the modes of two panels. The validity of this modeling method is verified by a regular hexahedron enclosure. Two cost functions are applied to this model. With the two cost functions, good results are obtained in minimizing the sound-pressure level (SPL) within irregular enclosure according to numerical investigations. By comparing the results obtained under controlled and uncontrolled states, the control mechanisms of the system are discussed. It is found that the control mechanisms vary with disturbance frequencies. At most disturbance frequencies, the SPL within enclosure is reduced by restructuring the modes of two panels simultaneously. When the disturbance frequency comes close to one of the natural frequencies of panel a, the dominant mode of panel a is suppressed, while the modes of panel b are reconstructed. While the disturbance frequency is near one of the natural frequencies of panel b, the modes of two panels are restructured at the same time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号