首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
表面增强拉曼光谱技术因其高灵敏度、操作简单、快速检测等优点,被广泛用于病毒检测方面。国内外的病毒拉曼检测研究主要集中在检测病毒核酸以及组成核酸的各种碱基的表面增强拉曼光谱(SERS),但少见对病毒蛋白的SERS检测。以新型冠状病毒(SARS-CoV-2)的S蛋白为检测对象,采用无标记SERS检测方法,对比SARS-CoV-2固态、饱和液态S蛋白的普通拉曼光谱和选用40 nm金纳米粒子为基底的SARS-CoV-2低浓度S蛋白SERS光谱。结果表明,以40 nm金纳米粒子为基底,采用SERS技术检测SARS-CoV-2的S蛋白是完全可行的。SARS-CoV-2的S蛋白分子中的羧基与金纳米粒子发生了分子增强,氨基与金纳米粒子发生了电磁增强,从而使得SARS-CoV-2的S蛋白拉曼效应得到了增强,并使得峰位发生一定移动。实验获得了较好的SARS-CoV-2低浓度S蛋白SERS光谱,为建立敏感、特异、快速的SARS-CoV-2检测新技术提供了一种方法。  相似文献   

2.
一种用表面增强拉曼光谱进行免疫检测的方法   总被引:1,自引:1,他引:0  
一种结合表面增强拉曼(SERS)技术和纳米粒子标记技术,通过银增强来实现免疫检测的方法。将p-巯基苯甲酸(MBA)作为探针,固定在免疫金溶胶粒子表面形成纳米标记,其与被基底捕获抗原分子发生免疫识别。通过银增强技术,在"三明治"结构对探针进行拉曼检测。  相似文献   

3.
挥发性有机物在自然环境中普遍存在,对人体健康造成显著影响,为此亟待发展高灵敏度的快速识别和检测技术。本文通过制备和优化表面增强拉曼散射(surface-enhanced Raman scattering,SERS)基底,实现了强吸附和弱吸附型挥发性有机物的检测。首先利用化学方法合成了粒径约为30nm的均匀准球形金纳米粒子,该粒子具有SERS效应以及良好的化学稳定性,以该纳米粒子为单元,通过气液两相界面自组装技术制备增强性能好、SERS信号均匀的金纳米粒子单层膜(Au MLF),并以此为SERS基底对挥发性有机物苯硫酚进行了检测。为了实现弱吸附挥发物质的检测,对Au MLF表面进行了修饰,构建了聚二甲基硅氧烷(PDMS)-Au MLF复合基底,实现了苯及二甲苯等弱吸附型挥发性有机物的检测。  相似文献   

4.
金属有机框架(Metal Organic Frameworks,MOFs)是一类新型的多孔状的高结晶性材料。MOFs借助于过渡金属离子和有机配体的有序组装,以配位作用构筑起晶体结构。MOFs材料可作为纳米粒子的稳定载体用于与金属纳米粒子组合形成新型的纳米复合材料。这一新型的纳米复合材料可作为SERS基底应用于SERS光谱分析研究。我们将Ag纳米粒子封装在MIL-101(Cr)这种MOFs材料中,MOFs材料所具备的大的比表面积和多孔状的结构可使分析物分子预富集且更加接近金属银纳米粒子表面,从而有助于改善SERS光谱分析与检测性能。借助于多种表征手段与数据分析,我们对此纳米复合材料的制备条件进行了优化。以对巯基吡啶为光谱探针表征了该纳米复合材料的SERS光谱活性,计算了增强因子。在此基础上,将该纳米复合材料用于水溶液中超痕量葡萄糖的SERS光谱检测,探讨了应用SERS光谱技术对葡萄糖进行定量分析的可行性。  相似文献   

5.
本文利用斜角沉积法制备银纳米棒阵列基底用于蛋白质二级结构的检测,结合酰胺Ⅲ谱带光谱分析,建立了一种基于表面增强拉曼光谱(SERS)蛋白质二级结构的表征方法.用这种方法获得了两种典型蛋白质(溶菌酶和细胞色素C)的SERS信号.通过分析蛋白质骨架酰胺Ⅲ的光谱,研究了浓度对蛋白质折叠状态的影响.结果表明在一定范围内随着浓度的增加,溶菌酶的α-螺旋结构和β-折叠结构成分增加,而细胞色素C的二级结构基本保持不变.  相似文献   

6.
本文利用斜角沉积法制备银纳米棒阵列基底用于蛋白质二级结构的检测,结合酰胺Ⅲ谱带光谱分析,建立了一种基于表面增强拉曼光谱(SERS)蛋白质二级结构的表征方法.用这种方法获得了两种典型蛋白质(溶菌酶和细胞色素C)的SERS信号.通过分析蛋白质骨架酰胺Ⅲ的光谱,研究了浓度对蛋白质折叠状态的影响.结果表明在一定范围内随着浓度的增加,溶菌酶的α-螺旋结构和β-折叠结构成分增加,而细胞色素C的二级结构基本保持不变.  相似文献   

7.
黄博  汪正坤  朱永  张洁 《光学学报》2023,(21):59-66
为了提高金属纳米粒子在光纤表面的富集密度,同时提高光纤表面增强拉曼散射(SERS)复合结构拉曼增强特性的稳定性,提出一种双金属(金和银)锥形光纤SERS探针结构。首先,采用化学还原法制备出形貌均一的金银纳米粒子;然后,采用光诱导的方法实现双金属在锥形光纤上的富集。制备的光纤SERS探针表现出良好的实验效果:对罗丹明6G(R6G)检测到的最低浓度低至10-10 mol/L;增强因子为2.07×108;相较于单金属银光纤SERS探针,双金属样品的稳定性提高了7倍(96 h后)。  相似文献   

8.
将表面增强拉曼散射(SERS)光谱与磁性流体的结合应用于SERS即时(POC)检测,首先将银纳米粒子修饰到磁性Fe3O4纳米粒子表面制备磁性等离子体(AgMNPs)。AgMNPs的强磁响应性能够快速分离和检测鱼皮表面的目标分析物。制备了具有不同腔体的微流体芯片,通过磁场限制磁流体在不同腔体内的分布,从而增强了SERS信号并将检测限提高了两个数量级。磁性流体POC传感器以优异的选择性和低至皮摩尔级的高灵敏度成功检测到鱼中的孔雀石绿(MG)。实现了一种无标记、无损的光学传感方法,具有检测食品或环境中各种有害成分的潜力。  相似文献   

9.
贵金属纳米粒子作为增强基底已经广泛应用于表面增强拉曼光谱(SERS)研究,传统的贵金属纳米基底在制备方法、增强能力、准确性等方面仍有待改进和提高。采用一种简易、高效的方法制备出了一种具有膜状结构的新型金纳米增强基底:以聚乙烯吡咯烷酮(PVP)作保护剂和粘结剂,通过化学还原法制备金纳米基底。实验考察了还原剂种类、反应温度、体系pH和柠檬酸钠浓度对反应的影响,制备出增强效果最佳的新型膜状金纳米基底。利用罗丹明B作为探针分子,考察基底的SERS特征,其增强因子可达6.5×105。利用扫描电镜(SEM)对纳米粒子的结构进行了表征,结果表明其具有膜状结构,且比表面积大,利于分子的吸附。相比于传统的贵金属纳米基底,该实验所制备的新型膜状金纳米基底增强效果更佳、灵敏度和准确度更高,具有很大的应用前景。  相似文献   

10.
设计了一种基于AgNPs-AuNPs的核-卫星纳米结构检测水样中多环芳烃芘的比色和SERS双通道传感系统。首先将单巯基β-环糊精修饰到纳米金颗粒和纳米银颗粒的表面。受益于氧化态的四甲基联苯胺的触发,当体系中存在多环芳烃芘时,纳米颗粒会自组装形成AgNPs-pyrene-AuNPs的核-卫星结构。芘分子在其中充当分子桥的作用,拉近纳米粒子距离,使得纳米粒子发生一定的聚集。所以芘分子的个数直接影响AgNPs-pyrene-AuNPs的核-卫星结构数量,使溶液颜色发生变化,能够通过目测法建立溶液颜色与芘浓度的关系;组装形成的的核-卫星结构具有非常丰富的“热点”而表现出较强的表面增强拉曼光谱(SERS)活性,可通过SERS方法实现芘分子的高灵敏高特异检测。此结构可通过比色法和SERS方法实现水中芘的高灵敏高特异性检测。该方法可以在25 min内快速完成微量芘的检测,比色法对芘的检出限为3.4μmol·L-1, SERS法的检出限为0.42μmol·L-1。根据上述原理,基于AgNPs-PAHs-AuNPs核-卫星结构的SERS传感器可用来检测水样中的...  相似文献   

11.
采用表面增强拉曼光谱(SERS)快速检测牛奶中的非法添加物。利用壳聚糖(CS)改性滤纸滤除牛奶中的蛋白质,并改善滤纸的色谱分离效果,再通过硼氢化钠还原银纳米粒子的方式自组装增强基底。其中优化了CS浓度、浸泡以及还原时间等,制备了具有良好SERS信号响应的功能化纸基。将其应用于分离与检测牛奶中同时掺杂三聚氰胺(MEL),二氰二胺(DCD)和硫氰酸钠(NaSCN)三种物质,在3.5cm色谱展开距离内实现了三者的基本分离,检测限均低于10ppm。  相似文献   

12.
基于表面增强拉曼光谱(SERS)技术在非标记蛋白质研究方面的最新进展。SERS是一个特殊的拉曼光谱现象,对于众多被吸附到粗糙金属表面上的拉曼活性分析物,可以提供增强拉曼信号(通常可以增强几个数量级)。SERS是一个灵敏的,选择性的,和通用的技术,并且可以实时、快速的对数据进行采集。因此,在基于仪器仪表技术和数据分析方法以及SERS在生物体系中的诸多优势,SERS经历了快速的发展阶段。重点介绍几个采用SERS技术对生物体系的代表性研究。某些SERS的生物应用发展比较成熟,并已经可以小范围临床应用,而有些还停留在发展的初始阶段(实验室研究阶段)。讨论了最近发展起来的几种基于SERS技术定量分析的方法, 选择不同SERS活性基底和技术(如生物分子在电极上,胶体纳米粒子,周期性图案结构和基于针尖拉曼技术)对蛋白质进行直接研究。此外,根据SERS指纹信息的变化可以用来研究蛋白质-蛋白质,蛋白质-配体间的相互作用。基于SERS技术对生物分子进行定性和/或定量分析方面显示出了相当大的优势。  相似文献   

13.
以氯金酸为原料,抗坏血酸为还原剂,柠檬酸钠为保护剂,用化学还原(种子生长)法制备了不同粒径、超均匀的球形金纳米粒子溶胶,并通过紫外可见吸收光谱(UV-Vis)和扫描电子显微镜(SEM)进行表征。结果表明,随着金纳米粒子粒径的增大,其UV-Vis光谱中的吸收峰发生红移并出现四极峰。为进一步研究金纳米粒子表面增强拉曼散射(SERS)效应的作用机理并优化其灵敏度,我们以罗丹明6G(R6G)为探针分子,对不同粒径的金纳米粒子进行SERS表征,发现R6G的SERS信号随着金纳米粒子的增大先增强后减弱。当金纳米粒子的平均粒径达到120 nm时,产生最强SERS信号增强,增强因子约为1.1×107。三维时域有限差分法(3D-FDTD)理论模拟纳米粒子阵列电磁场分布结果与实验数据的趋势一致。  相似文献   

14.
本文介绍了一种制备多功能磁性Fe2O3/Au/Ag纳米粒子的简捷方法, 制备的粒子直径大约在100 nm左右, 采用UV-vis和SEM对该结构进行了表征。并通过调节硝酸银的用量, 制备了一系列具有不同壳层厚度和表面结构的多重核壳纳米粒子。以苯硫酚(TP)为探针分子, 研究了不同银壳厚度的磁性纳米粒子的表面增强拉曼散射(SERS)活性。结果表明随Ag:Au比例的不断增加, 其SERS活性呈现先增大后减小的趋势, 这与表面结构的改变有关。  相似文献   

15.
郭威  吴坚  王春艳  陈涛 《发光学报》2018,39(11):1633-1638
银纳米离子的SERS技术和SEF技术的信号检测灵敏度非常高,可以用在微流控芯片的定量分析中。为了提高微流控芯片光学检测技术的检测精度,提出一种在微通道中添加银纳米粒子来增强SYBR GreenⅠ拉曼和荧光信号的方法,并对该方法的原理和增强效果进行了研究。首先,利用准分子激光器在PMMA基板上直写刻蚀出宽200 μm、深68 μm的微通道,接着将制备的银前体溶液加入微通道,通过加热制备出表面增强拉曼(SERS)和表面增强荧光(SEF)基板,接下来对添加银纳米粒子前后的拉曼和荧光信号分别进行对比,进一步研究了微通道中不同浓度银纳米粒子对SYBR GREEN I的拉曼和荧光信号增强效果。添加银纳米粒子后,表面增强拉曼(SERS)实验的增强因子为3.5×103,添加银纳米粒子的样品的荧光信号强度与不含银纳米粒子样品的荧光信号强度相比,约增加了1倍。结果表明,在微通道中检测SYBR Green I时通过增加银纳米粒子显著地增强了拉曼和荧光信号,这种方法可以用在以SYBR GreenⅠ做染料的微流控芯片检测技术中。  相似文献   

16.
钟洁  黄青 《光散射学报》2018,(4):325-331
多氯联苯是一种持久性有机污染物,它在环境中极难分解,并通过食物链可在生物体内富集,从而对生态系统和人类健康造成严重危害。目前,多氯联苯在土壤、垃圾处理厂、天然水域及水生生物体内仍广泛存在,所以,亟需建立一种快速、灵敏、抗干扰的痕量检测方法。本项工作以金包裹二氧化硅的球形纳米颗粒(SiO_2@Au)为探针,采用表面增强拉曼光谱(Surface-Enhanced Raman Spectroscopy,SERS)技术对多氯联苯进行痕量检测。研究中,我们制备了不同大小、形状均一的金包裹二氧化硅球形纳米粒子(SiO_2@Au)(粒径范围为200~310nm),并将制备好的纳米粒子用于溶液中PCB-77的检测。结果发现,在红外激光激发下,所制备的SiO_2@Au纳米粒子对PCB-77分子都显示了较好的SERS检测效果,而用200nm的SiO_2@Au纳米颗粒检测PCB-77,其检测低限可达10-7 M。这项工作为环境中的有机污染物痕量检测提供了一种有效可行的方法。  相似文献   

17.
很多致命的疾病都与细菌感染密切相关,快速、准确地检测和鉴定细菌及微生物,一直是微生物学家及有关科研工作者追求的目标,拉曼光谱可以提供丰富的谱图信息,而表面增强拉曼光谱(SERS)有很高的检测灵敏度,然而一些贵金属SERS基底却容易使蛋白质变性,影响检测结果。以大肠杆菌(E.Coli)作为目标检测细菌,首先检测到大肠杆菌的拉曼光谱,之后采用两种不同的SERS基底(ZnO,Ag溶胶)进行检测。结果表明Ag溶胶基底有很强且较丰富的SERS信号,但是相对于E.Coli的本体拉曼谱峰有较大位移,说明与银溶胶相互作用的细菌存在一定的蛋白质变性过程;而ZnO纳米粒子与细菌作用的SERS信号虽然较弱,但是与E.Coli的本体拉曼信号较为相似,说明ZnO纳米粒子对E.Coli本体基本无损,这将有利于SERS在生物体系的无损检测。该结果可以为利用生物相容性好的半导体SERS基底进行细菌的检测提供有益的参考。  相似文献   

18.
表面增强拉曼散射(SERS)很大程度的弥补了拉曼散射强度弱的缺点,迅速成为科研工作者们的研究热点,在食品安全、环境污染、毒品以及爆炸物检测等领域应用广泛。纳米技术的发展使得目前对于SERS的研究主要集中于金属纳米颗粒基底的制备,金属纳米粒子的种类、尺寸及形貌对SERS增强和吸收峰峰位均有影响,要获得好的增强效果,需要对金属纳米结构进行工艺优化。特别是,需要结合金属纳米粒子的结构和激励光波长,以期获得更好的增强效果。为了研究SERS增强和吸收峰之间的关系,开展了具有双共振吸收峰的金属纳米粒子的研究。首先利用FDTD Solutions仿真建模,主要针对金纳米颗粒直径、金纳米棒长径比及分布状态对共振吸收峰进行仿真,得到金纳米球理论直径在50 nm左右,金纳米棒理论长径比在3.5~4.5左右时,吸收峰分别分布在532及785 nm附近,符合多波段激励光拉曼增强条件;对于激励光偏振方向,其沿金纳米棒长轴方向偏振时吸收峰位于785 nm附近,沿金纳米球短轴方向偏振时吸收峰位于532 nm附近。然后采用种子生长法,制备了可用于多种波长激励光的双吸收峰表面增强拉曼散射基底。通过改变硝酸银用量(5,10,20,30和40 μL)、盐酸用量(0.1和0.2 mL)以及其生长时间(15,17,21和23 h)等多种工艺参数来控制金纳米棒含量,得到了同时含有金纳米球及金纳米棒的双吸收共振峰金纳米粒子。最后用该样品作为基底,罗丹明6G(R6G)作为探针分子,分别测试其在532,633和785 nm激励光入射时的SERS表征,对分析物R6G最低检测浓度均达到了10-7 mol·L-1,增强因子达到了~105,满足了多波段SERS检测的需要。  相似文献   

19.
不同形状的金纳米粒子在表面增强拉曼散射(surface enhanced Raman scattering,SERS)中有不同的增强效果,多面体金纳米粒子具有多角结构,显示出比金纳米板更为明显的增强效果,近年来对其合成和性质的研究备受关注。该研究探究了十二面体,二十面体,三角板,球形四种形状的金纳米粒子在SERS中不同的增强效果。分别采用硼氢化钠还原法和以N,N-二甲基甲酰胺(DMF)为还原剂制备金三角纳米片和二十面体金纳米粒子,又以二十面体金纳米粒子为种子制备出十二面体金纳米粒子,并分别以以上三种不同形貌的金纳米粒子及球形金溶胶为基底,4-巯基吡啶,对巯基苯甲酸为探针分子检测了其在不同激发波长下的增强效果。透射电子显微镜结果表明金三角纳米板的平均边长为130nm,二十面体和十二面体金纳米粒子的粒径分别为100和120nm。三者的紫外可见吸收峰分别在589,598和544nm处。表面增强拉曼散射结果表明金多面体比金三角纳米板表现出更好的增强效果。  相似文献   

20.
采用化学还原法制备了以Au为核、包覆Ag的双金属核壳Au@Ag纳米粒子,并成功地用于表面增强拉曼光谱(SERS)分析测试。通过改变制备液中Ag/Au的量比来调控Ag壳包覆厚度。采用透射电子显微镜(TEM)和紫外-可见光谱仪(UV-Vis)对Au@Ag纳米粒子的构貌进行表征。TEM显示明显存在核壳结构,且Ag壳层随Ag/Au的量比的增加而逐渐变厚;UV-Vis表明随着Ag/Au的量比的增加,Au@Ag纳米粒子出现了Au核与Ag壳吸收峰的2个等离子体共振峰,同时伴随着Au峰的蓝移和Ag峰的红移。以双甲脒为分析物,考察了不同Ag/Au的量比时的Au@Ag纳米粒子的SERS活性。结果表明,SERS活性随Ag/Au的量比的增加先增大后减小,在6∶5时其SERS增强效应最佳,此时Ag壳厚度约为6 nm。以对巯基苯胺(4-ATP)、结晶紫(CV)和双甲脒为分析测试对象,对比了Au@Ag、Ag、Au 3种基底的SERS活性。结果表明,所制备的Au@Ag纳米粒子的SERS活性要明显优于单纯的Au、Ag纳米粒子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号