首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
近年来,随着国防、工业、科技等领域飞速发展,无论是对于军用动力发射系统还是对于民用钢铁冶炼以及高科技新兴产业,辐射温度测量都具有重要意义。尤其在温度极高且伴随着瞬态测温(小于1 μs)需求的场合,多光谱辐射测温法被广泛运用。多光谱辐射测温法是通过选取被测目标多个特征波长,测量特征波长的辐射信息,再假设发射率与波长相关的数学模型,最终求解得到辐射温度。目前,利用该方法实际测温时,光谱发射率都采用固定的假设数学模型,而针对目标在不同温度状态下,该固定模型则无法进行自适应变化。同样,在不同温度下,如何解算最终的发射率和辐射温度也没有普适性的方法。基于普朗克黑体辐射定律,提出一种被测目标在不同温度下光谱发射率函数基形式不变的思想,简称发射率函数基形式不变法。通过该方法,发射率模型可以根据物体在不同温度状态下,函数系数动态改变来进行自适应变化。同时对于如何解算最终的发射率和辐射温度也相应提出了普适性的方法。通过大量仿真验证以及实际测量光谱辐射照度标准灯和溴钨灯温度实验,证明本文提出的方法比现有的光谱发射率处理方法更加简单实用并且能够有效地提高光谱发射率的计算精度,从而提高辐射温度测量精度。同时具有实用性好、应用广泛等特点。  相似文献   

2.
多光谱测温依据黑体辐射定律,通过辐射光强、多组波长即能推测出温度值,克服了比色测温要求光谱单一和比色光谱相近的约束,在工程实际中得到了广泛的应用。在多光谱温度反演的过程中,光谱发射率的求解及多光谱数据处理是精确测温的关键。目前,光谱发射率的求解大多以光谱发射率假设模型为主要的方法,当假设模型与实际情况接近时,反演的温度与光谱发射率精度很高,当二者不相符时,反演的结果与实际情况相差甚大,对于复杂材料和燃烧过程中材料性能动态变化情况下的测温,以光谱发射率假设模型的方法存在盲目性;近年来,基于神经网络的深度学习的方法应用于多光谱测温,避免了光谱发射率假设模型,可建立温度与多光谱的非线性统计规律关系,但需要海量数据与超强算力支撑,且建模过程复杂。针对上述问题,提出了一种基于多元极值优化的多光谱温度测量方法(MEVO),该方法利用不同温度下多光谱信号之间的关联性,通过分析在多光谱温度反演过程中各通道测量温度之间的联系,基于多光谱辐射测温原理以及温度反演过程中各通道数据之间的信息关联,建立多元温差关联函数,通过关联函数的寻优,建立高精度测温模型。该方法将建模过程简化为多元温差函数的寻优问题,避免了...  相似文献   

3.
Zhai Y  Shen H  Zhu RH  Ma SD  Li JX  Chen L  Gu JL 《光谱学与光谱分析》2010,30(11):3161-3165
在现代动力学发射系统中,在强电磁场激发下瞬间产生的等离子体的火焰辐射温度对飞行目标运动状态以及动力系统轨道烧灼情况有着重要的影响。针对该情况下火焰不仅温度极高,而且其产生是一个瞬态过程。因此,传统的接触式测温方法不再使用,而基于光学高温计和CCD成像阵列等非接触式测温方法也无法响应瞬态过程。文章以经典的普朗克黑体辐射定律作为理论基础,结合多波长光谱辐射方法,研制了新型的多光谱辐射瞬态高温测温计。该高温计可以对目标产生的从300~860nm的波段内任意波长光谱的提取,最快响应时间可达到2ns。通过采用高分辨率衍射光栅和光纤连接的方式,保证多光谱提取的准确性。实验结果表明,利用目标发出的多光谱辐射测温与高速响应光电探测器件相结合的方法能够测量得到动力发射目标表面辐射温度分布的同时,也保证了较高的精度,满足了对于发射瞬间物体表面瞬态温度测试的要求。  相似文献   

4.
等离子体激发和辐射温度瞬态光谱测试方法   总被引:1,自引:0,他引:1  
对等离子体温度的测量能间接诊断瞬态物理场的瞬时温度变化.使用望远光学系统对准等离子体并收集其光谱.光栅分光系统高精度地(△λ<0.1 nm)分离提取出测最所需的等离子体四通道特征光谱信号.光纤将光谱信号导入高灵敏度、快速响应的光电倍增管(PMTs,采集时间小于1 μs),达到瞬态测试的要求.用四通道数据拟合Boltzmann直线提高了计算激发温度的精度(优于2%),同时从黑体辐射理论推导出等离子体辐射温度的计算模型.只需用一次测量得到的光强就可以同时得到等离子体的激发温度和辐射温度.利用标准温度灯对系统的光谱响应系数进行了标定,通过实验表明系统测温的精度优于3%.  相似文献   

5.
翟洋  朱日宏  沈华  顾金良 《应用光学》2011,32(4):698-704
 无论在民用钢铁冶炼、焊接技术或者军用近代动力学发射系统中,对于目标火焰的辐射温度测量一直有着重要意义,其对钢铁冶炼成分的判定、焊接工艺的提高和动力系统轨道烧灼的研究都有着重要的影响。该情况下火焰不仅温度极高,而且在某些场合其产生是一个瞬态过程。因此,传统的接触式测温方法不再适用。基于经典的普朗克黑体辐射定律在测量时受到光谱发射效率的影响也难以准确得到最后结果。以经典的普朗克黑体辐射定律作为理论基础,结合多波长光谱辐射方法,研制了新型的多光谱辐射瞬态高温测温计。该高温计最快响应时间可达到2 ns。通过采用高分辨率衍射光栅和光纤连接的方式,保证多光谱提取的准确性。同时将经典的普朗克黑体辐射定律结合多波长提出新型辐射温度算法,不仅解决对该目标辐射温度的精准计算,更可以同时求得目标在该温度下的实时光谱发射效率。通过对高速发射目标和可调节亮度的溴钨灯测量的实验表明,该方法满足测量动力发射目标表面辐射温度分布的同时,也保证了较高的精度,满足了对于发射瞬间物体表面瞬态温度测试的要求。  相似文献   

6.
辐射测温以Planck定律为基础通过测量物体表面的发射辐射来反演温度。推导了有限立体角辐射测量条件下的单色测温方程,发现多光谱辐射测温能够实现温度和光谱发射率同时求解通常需满足特定的辐射测量条件:进行微元立体角辐射测量或仅针对漫发射体的有限立体角辐射测量。引入多项式发射率模型,经过数学转化,可以摆脱以上测量限制,得到具有测量普适性的单色测温方程,但却不一定能同时测量光谱发射率。对测温方程组的多解问题进行了初步研究,提出使测量通道数大于待求变量数及采用非线性最小二乘来解决此问题。  相似文献   

7.
基于光谱响应定标的辐射测温方法   总被引:2,自引:0,他引:2  
辐射测温是通过测量物体发出的辐射来反演温度,辐射测量方程中含有与空间位置相关的非光谱参数,通常需通过辐射标定予以确认。而该研究将非光谱参数归入有限项级数形式的光谱发射率中,这既不会影响多通道测温方程组的封闭性,又不会影响真温求解,从而在无需测量数据归一化的条件下,实现了无需空间位置标定的辐射测温,该方法仅需要标定仪器的绝对光谱响应或相对光谱响应,但不能解得发射率。以两个特例分别对多波长测温方法和多谱段测温方法的求解特性进行了研究。结果表明:对于任意的测量矢量,有效波长不相同的多波长测温唯一解是存在的;而多谱段测温时,存在无解区域,双解直线,甚至可能存在三解直线。  相似文献   

8.
高于绝对零度的物体满足Plank定律,因此红外辐射在一定程度上反映温度。红外辐射测温具有响应速度快,分辨率高,能较好的实现对微小、高速移动等不可接触测量目标的温度测量。用一种先进的双波段红外遥感光谱系统采集不同温度金属的红外发射光谱,分析和研究这些不同温度的光谱数据所具有的不同特征。在此基础上,对样本提取重心位置、波峰位置、波长λ1的值、波长λ2的值四种光谱特征,寻找温度与其之间的函数关系;并建立多元线性回归模型,通过光谱反推温度值。实验结果表明,该方法可以有效的分辨有明显温差的高温物体,在实验所测温度范围内的测温绝对误差小于30 ℃,在测量误差小于20 ℃的置信区间内有98%正确率,优于一般系统需要保证目标发射率、大气透射率、环境等效辐射温度等复杂参数高精度的情况下2%的测温精度。该方法可以简单有效的对远距离目标测温,从而进一步拓展红外光谱遥测温度的应用领域。  相似文献   

9.
宋雪君  杨颜峰 《物理》1995,24(7):417-423
辐射测温是科学研究和工业生产中一种广泛采用的非接触测温方法,随着新型探测器件的出现,测温的精度不断提高,测温的范围不断扩大,但中低温特别是低温的测量却比高温要困难些,本文从黑体辐射理论出发,着重讨论了用热电型探测器测量辐射测试的方法,其中包括原理计算公式,探测光学系统,处理线路,计算机数据采集和处理,温度闭环控制方法等,在介绍实验系统的同时,对辐射温度测量系统的设计特点也进行了讨论。  相似文献   

10.
多光谱辐射测温技术测量火工烟火药剂燃烧温度   总被引:1,自引:0,他引:1  
Li ZY  Xi LX  Chen J  Guo CX  Liu CJ  Liu HY 《光谱学与光谱分析》2010,30(8):2062-2064
利用瞬态光谱辐射仪分析了火工烟火药剂燃烧火焰辐射光谱分布,介绍了多光谱辐射测温技术的工作原理。结合火工烟火药剂燃烧火焰特征光谱分布状况设计研制了具有12个工作通道的多光谱辐射测温系统,测试者可根据被测火焰光谱辐射分布状况选择合适的工作通道进行分析计算。该系统由光学部分,电路部分,数据采集部分及数据处理部分组成。文章以黑火药为例,应用该系统对其燃烧火焰的辐射能量进行了测定,经过迭代计算后给出黑火药燃烧温度随时间的变化曲线。实验证明,在分析被测火焰特征光谱分布的前提下,选择合适的光谱工作通道,多光谱辐射测温系统能够很好地应用于火工烟火药剂燃烧温度的测定,为火工烟火药剂燃烧输出特性的研究奠定了基础。  相似文献   

11.
针对采用蓝光激发荧光粉产生白光的YAG型白光LED,通过分析其光谱波谷特性,采用常规可见光光谱仪和温控系统设计了一套基于光谱特征参量的LED结温测试系统.测量方法分为定标函数的测定和任意状态下的测量两部分.首先采用光谱仪测量在给定的多个不同结温和正常驱动电流下的相对发光光谱数据,再分析其光谱波谷处的相对光谱强度.从实用性和降低成本的角度考虑,采用正常工作电流驱动,但以正常工作电流驱动下的LED在光谱仪的固定反应时间内其自加热效应不可忽略.因此采用选定基准状态法,将各温度下的相对发光光谱强度与基准状态下的逐点作差得到相应的发光光谱强度差,同时为了减少温控系统引入的温度偏差,同样将各温度与基准温度作差得到相应的结温差.实验表明高低色温大功率LED的结温差和发光光谱强度差经过一定的函数拟合形成的定标函数其线性度都较高,R2达到0.99以上;利用定标函数,可以测量出在任意状态下的LED结温.最后将采用本方法得出的高低色温LED在不同条件下的结温数据与通过Mentor Graphics公司的T3Ster仪器的测量结果进行了比较,最大偏离度为2.82%,在可接受的误差范围内,表明此方法完全具备可行性,具有一定的实用价值.  相似文献   

12.
基于相对光谱强度的非接触式LED结温测量法   总被引:3,自引:0,他引:3  
基于一体化封装高导热铝板,利用蓝光芯片及常用YAG荧光粉,制备了大功率白光LED,并研究了其在不同结温下的光谱变化规律。发现白光LED辐射光谱在波长485 nm处辐射强度具有极小值,并且此波长的辐射强度与LED结温存在良好的线性关系,以此为依据给出了该波长辐射强度与结温的关系公式,测量了LED结温,并与正向压降法及光谱法的测量结果进行对比。实验结果显示:所提出的结温测量方法与正向压降法测量结果差距不超过2 ℃,该方法保持了正向压降法的结温测量较为准确的优点,克服了光谱法的光谱漂移过小,对测试结果带来较大误差的缺点,同样也具有光谱法的实用性强、高效直观、非接触测量、不破坏灯具结构的优点。  相似文献   

13.
图像光谱技术实现精确测温   总被引:1,自引:0,他引:1  
建立了一种以灰体辐射为基础测量温度的新方法,它不仅可以测定辐射体的实时温度,而且可以实现无接触和高精度测量。首先,利用多通道CCD图像光谱仪精确测量辐射体在较宽波段内的辐射光谱,作为该辐射体的指纹光谱,将其定义为一个等效的灰体;其次,通过对所测光谱的拟合确定该辐射体的灰体辐射模型的系数,从而确定待测辐射体的灰体辐射模型;最后,通过光谱技术与灰体辐射模型的结合确定给定辐射体的任意温度。通过对无火焰和有火焰这两类热辐射体的实验检验,表明该测温方法具有实时、准确和无接触等优点。  相似文献   

14.
光谱发射率是辐射体辐射能力的重要参数,通过光谱发射率可以建立辐射体与黑体的之间的桥梁,从而黑体辐射的相关理论就可以应用于辐射体。采用普朗克公式,光谱高温计的每一个光谱通道可以构成一个方程,这个方程中包含有真温、亮度温度和光谱发射率。对于N个光谱通道可以构成N个方程,这N个方程中也包含一个真温、N个亮度温度和N个光谱发射率,其中亮度温度是已知量,真温和光谱发射率是未知量。由于方程组是欠定的,理论上存在着大量的解。为了求解这个方程组常需要假设光谱发射率与波长和温度之间的数学模型,使方程组未知数的个数降为N个,实现真温的求解。当光谱发射率与波长或温度之间的规律被正确获得后,多光谱辐射测温法才能反演出正确的真温。通过对上述较为常用两种光谱发射率模型的分析可知,这两种方法的基本思想都是试图找到光谱发射率与波长或温度之间的函数关系,确立光谱发射率与波长或温度之间数学模型。用含有波长或温度的表达式代替光谱发射率,实现方程的求解。由于光谱发射率具有一定的不确定性,假设的光谱发射率模型与实际光谱发射率的变化之间存在一定的差异,有可能导致真温反演产生较大的误差。光谱发射率与波长或温度之间的数学模型是需要通过大量的实验和经验才能获得的,而且这种数学模型通用性较差,尤其是当待测辐射体发生改变时,这种数学模型也就失去了意义。为了解决多光谱高温计在实际测量中存在的问题,找到一种无需假定光谱发射率与波长或温度之间数学模型而且又具有一定通用性的多光谱真温反演方法成为一种迫切的需要。为此,将优化的思想引入到了多光谱求解过程中,将多光谱真温的求解问题转化为多目标普朗克极小值优化(MMP)问题,从而不再需要建立光谱发射率与波长或温度之间的数学模型,降低了系统的复杂性与难度。该方法以普朗克公式和光谱发射率之间的等式约束条件为基础,构造了六个目标函数,实现了真温的求解。新方法在反演精度上得到了较大幅度的提高,仿真数据的误差都小于1%。借助于以往的真实测量数据,利用多目标普朗克极小值优化法实现了真温的反演。  相似文献   

15.
谱线强度法所测得温度的物理意义   总被引:2,自引:0,他引:2  
从统计热力学的角度分析了电子温度和激发温度的不同。明确的指出谱线强度法所测得的是重粒子内部电子的激发温度而不是自由电子温度。在热力学平衡态下等离子体激发温度与电子温度相同,在热力学非平衡态下激发温度与电子温度不同。在对真空室中电弧加热发动机羽流的研究中,采用谱线强度法测量了羽流的表观激发温度,同时采用Langmuir探针法测量羽流的电子温度,两种温度之间的巨大差异证实了谱线强度法所测得的温度不是电子温度。  相似文献   

16.
针对广泛应用的温度检测,设计了一种多测点智能温度传感器。该智能温度传感器将多个常规温度传感元件、信号调理电路、带数字总线接口的微处理器连接起来,利用三维单片智能传感器结构集成在一块硅基片上,实现了三维集成多层结构。同时智能温度传感器利用信号幅度、变化趋势、多测点冗余故障判决和传感信息融合方法,在实现传感故障诊断的同时提高检测准确度。  相似文献   

17.
在电弧等离子体的光谱诊断中,标准温度法测温原理与目前先进的图像传感技术相结合,通过特征谱图像完成电弧全场温度信息采集,因其良好的时、空分辨率而被广泛应用于电弧温度测量。但是谱线的发射系数与等离子体温度不是单调变化关系,传统标准温度法选取一条ArⅠ谱线完成对电弧等离子体的测量,在电弧内部的高温电离区域产生谱线辐射强度降低的现象,需要人为判定电弧不同位置所处的温度区间才能完成温度的计算,整个过程无法通过软件自主完成。针对此问题,根据电弧等离子体的局部热力学平衡条件,探索一种基于双特征谱线的标准温度法测温原理,通过融合电弧在外层低温区域聚集的Ar原子发出的ArⅠ谱线发射系数场,和在高温区域的Ar一次电离离子所发出的ArⅡ特征谱线发射系数场,将达到ArⅠ谱线标准温度的位置处的ArⅡ谱线发射系数作为电弧不同温度区域的判定依据,完成电弧等离子体高温区域的自动判别,继而应用ArⅠ谱线发射系数与温度对应关系在电弧高、低温区域分别计算电弧温度,消除单一的ArⅠ谱线发射系数场暗区给计算带来的不利影响;设计并搭建了一种镜前分幅采集系统,其中分光镜将弧光等能量分成两束,利用两组反射镜和窄带滤光片建立起两路光学通道,使CMOS在一次曝光中完成两组电弧特征谱图像的采集,并且两幅图像的采集时刻、焦距、光圈等拍摄参数完全一致,达到良好的时间、空间一致性,从而减小谱线融合时误差的输出,满足了原位获取两组电弧特征谱图像的需求;为验证测量系统可行性以及后期的电弧图像提取,以黑白棋盘为标靶,用Harris算子对系统采集的图像进行扫描,根据角点坐标证明系统所采集的两幅图像具有良好的一致性,并且据此将两幅图像做归一化处理,以便后期的电弧特征谱图像的提取;通过假设所测电弧等离子具有轴对称属性,以CMOS所采集的特征谱图像亮度信息作为电弧发射系数场在不同角度下的投影依据,经过中值滤波降噪后,利用ML-EM迭代重建算法求解电弧的三维发射系数分布。实验中,选择受自吸收效应影响较小的ArⅠ696.5 nm谱线和ArⅡ480.6 nm谱线为测量目标,并且在696.5 nm谱线的光通路中加入OD0.4的中性减光片,使两幅特征谱图像的最高亮度值保持一致。选取150A焊接等离子弧为测量对象,经ML-EM法三维还原后,将两条谱线发射系数场等像素融合,在ArⅠ谱线发射系数达到最大值的像素点位置处,ArⅡ谱线发射系数达到εrp,判定ArⅡ谱线发射系数大于εrp的像素点位置为电弧高温区域,其余位置为低温区域,最终在不同温度区域自动完成焊接等离子弧的温度计算。实验结果表明696.5 nm谱线和480.6 nm谱线发射系数场融合后可以自动识别电弧高温区域,继而完成电弧等离子体的自动测量,为电弧温度实时监测的实现提供更多可能。  相似文献   

18.
材料的未知发射率是辐射测温的一大障碍,它导致了无法依靠单组测量数据获得材料的真实温度,人们只能通过假定材料发射率模型来计算出材料的亮度温度等非真实温度。基于这样的背景,Gardner J等科学家们提出了多光谱测温法并不断完善其理论,如今多光谱测温广泛应用于高温和超高温测量、高温目标的热性能测量、真实温度动态测量等。2005年,孙晓刚提出了二次测量法,二次测量法属于多光谱真温反演算法的一种,其通过两组测量数据之间的迭代运算解决了反演真温与反演各波长下材料发射率的难题,并且通过构建大量发射率模型来确保各波长下反演出的发射率的精度,但是其在数学运算和软件运行中需要构建数量庞大的发射率模型库、通过匹配库中所有发射率模型来得到真温最优解,这不仅需要大量计算时间而且占用大量软件资源。提出了新的多光谱真温快速反演方法,理论推导出了的材料辐射能量当量与发射率之间的不等式方程组,在二次测量法算法中添加了对发射率模型库优化筛选步骤,这一措施能够筛选掉发射率模型库中不合理的模型以缩小发射率模型库的规模,从而节省大量计算时间和软件资源。首先进行了0.400~1.100波段的仿真实验,实验中分别对六种发射率模型进行了多光谱真温快速反演方法和二次测量法的反演结果对比,结果表明,对于同一个被测目标在相同的温度初值和相同的发射率搜索范围下,真温快速反演方法不仅保证了反演精度,而且相比于二次测量法减少了29%~64%的发射率模型数和26%~57%的计算时间。进行了0.574~0.914波段的实测对比实验,实验结果表明对于相同条件下,真温快速反演方法在保证精度的前提下,相比于二次测量法减少了42%~48%的发射率模型数和35%~49%的计算时间。实验证明真温快速反演方法可行,对于大规模多光谱真温测量和在线多光谱真温测量有重要价值。  相似文献   

19.
基于二次测量的多光谱辐射测温反演算法由于无需事先假设发射率模型而受到广泛关注,但需要较长的迭代时间,并且需要设定合适初始温度和发射率范围。为此提出了基于发射率偏差约束的多光谱真温反演算法。将二次测量法中发射率连续迭代转变为发射率偏差约束后迭代,拟合了光谱发射率偏差和温度偏差之间的函数关系,依据此函数关系确定每次迭代所产生的发射率偏差,从而迅速减小发射率搜索范围,提高计算效率。针对四种光谱发射率模型的仿真结果表明,与二次测量法相比,新算法无需设定温度初值范围,在保证反演精度的前提下,运算效率提高60%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号