首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 694 毫秒
1.
We have performed high-precision computational studies of the fractal dimension as a function of system length for spatiotemporal chaotic states of the one-dimensional complex Ginzburg-Landau equation. Our data show deviations from extensivity on a length scale consistent with the chaotic length scale, indicating that this spatiotemporal chaotic system is composed of weakly interacting building blocks, each containing about 2 degrees of freedom. Our results also suggest an explanation of some of the "windows of periodicity" found in spatiotemporal systems of moderate size.  相似文献   

2.
We study resonances of multidimensional chaotic map dynamics. We use the calculus of variations to determine the additive forcing function that induces the largest response, that is, the greatest deviation from the unperturbed dynamics. We include the additional constraint that only select degrees of freedom be forced, corresponding to a very general class of problems in which not all of the degrees of freedom in an experimental system are accessible to forcing. We find that certain Lagrange multipliers take on a fundamental physical role as the efficiency of the forcing function and the effective forcing experienced by the degrees of freedom which are not forced directly. Furthermore, we find that the product of the displacement of nearby trajectories and the effective total forcing function is a conserved quantity. We demonstrate the efficacy of this methodology with several examples.  相似文献   

3.
In this paper we discuss the control of complex spatio-temporal dynamics in a spatially extended nonlinear system (fluid model of Pierce diode) based on the concepts of controlling chaos in the systems with few degrees of freedom. A presented method is connected with stabilization of unstable homogeneous equilibrium state and the unstable spatio-temporal periodical states analogous to unstable periodic orbits of chaotic dynamics of the systems with few degrees of freedom. We show that this method is effective and allows to achieve desired regular dynamics chosen from a number of possible in the considered system.  相似文献   

4.
The theory of ecological stoichiometry considers ecological interactions among species with different chemical compositions. Both experimental and theoretical investigations have shown the importance of species composition in the outcome of the population dynamics. A recent study of a theoretical three-species food chain model considering stoichiometry [B. Deng and I. Loladze, Chaos 17, 033108 (2007)] shows that coexistence between two consumers predating on the same prey is possible via chaos. In this work we study the topological and dynamical measures of the chaotic attractors found in such a model under ecological relevant parameters. By using the theory of symbolic dynamics, we first compute the topological entropy associated with unimodal Poincare? return maps obtained by Deng and Loladze from a dimension reduction. With this measure we numerically prove chaotic competitive coexistence, which is characterized by positive topological entropy and positive Lyapunov exponents, achieved when the first predator reduces its maximum growth rate, as happens at increasing δ1. However, for higher values of δ1 the dynamics become again stable due to an asymmetric bubble-like bifurcation scenario. We also show that a decrease in the efficiency of the predator sensitive to prey's quality (increasing parameter ζ) stabilizes the dynamics. Finally, we estimate the fractal dimension of the chaotic attractors for the stoichiometric ecological model.  相似文献   

5.
The dynamics of cold atoms in conservative optical lattices obviously depends on the geometry of the lattice. But very similar lattices may lead to deeply different dynamics. In a 2D optical lattice with a square mesh, it is expected that the coupling between the degrees of freedom leads to chaotic motions. However, in some conditions, chaos remains marginal. The aim of this paper is to understand the dynamical mechanisms inhibiting the appearance of chaos in such a case. As the quantum dynamics of a system is defined as a function of its classical dynamics – e.g. quantum chaos is defined as the quantum regime of a system whose classical dynamics is chaotic – we focus here on the dynamical regimes of classical atoms inside a well. We show that when chaos is inhibited, the motions in the two directions of space are frequency locked in most of the phase space, for most of the parameters of the lattice and atoms. This synchronization, not as strict as that of a dissipative system, is nevertheless a mechanism powerful enough to explain that chaos cannot appear in such conditions.  相似文献   

6.
Nara S 《Chaos (Woodbury, N.Y.)》2003,13(3):1110-1121
Complex dynamics including chaos in systems with large but finite degrees of freedom are considered from the viewpoint that they would play important roles in complex functioning and controlling of biological systems including the brain, also in complex structure formations in nature. As an example of them, the computer experiments of complex dynamics occurring in a recurrent neural network model are shown. Instabilities, itinerancies, or localization in state space are investigated by means of numerical analysis, for instance by calculating correlation functions between neurons, basin visiting measures of chaotic dynamics, etc. As an example of functional experiments with use of such complex dynamics, we show the results of executing a memory search task which is set in a typical ill-posed context. We call such useful dynamics "constrained chaos," which might be called "chaotic itinerancy" as well. These results indicate that constrained chaos could be potentially useful in complex functioning and controlling for systems with large but finite degrees of freedom typically observed in biological systems and may be such that working in a delicate balance between converging dynamics and diverging dynamics in high dimensional state space depending on given situation, environment and context to be controlled or to be processed.  相似文献   

7.
We present numerical simulation results of driven vortex lattices in the presence of random disorder at zero temperature. We show that the plastic dynamics is readily understood in the framework of chaos theory. Intermittency "routes to chaos" have been clearly identified, and positive Lyapunov exponents and broadband noise, both characteristic of chaos, are found to coincide with the differential resistance peak. Furthermore, the fractal dimension of the strange attractor reveals that the chaotic dynamics of vortices is low dimensional.  相似文献   

8.
Different transient-chaos related phenomena of spatiotemporal systems are reviewed. Special attention is paid to cases where spatiotemporal chaos appears in the form of chaotic transients only. The asymptotic state is then spatially regular. In systems of completely different origins, ranging from fluid dynamics to chemistry and biology, the average lifetimes of these spatiotemporal transients are found, however, to grow rapidly with the system size, often in an exponential fashion. For sufficiently large spatial extension, the lifetime might turn out to be larger than any physically realizable time. There is increasing numerical and experimental evidence that in many systems such transients mask the real attractors. Attractors may then not be relevant to certain types of spatiotemporal chaos, or turbulence. The observable dynamics is governed typically by a high-dimensional chaotic saddle. We review the origin of exponential scaling of the transient lifetime with the system size, and compare this with a similar scaling with system parameters known in low-dimensional problems. The effect of weak noise on such supertransients is discussed. Different crisis phenomena of spatiotemporal systems are presented and fractal properties of the chaotic saddles underlying high-dimensional supertransients are discussed. The recent discovery according to which turbulence in pipe flows is a very long lasting transient sheds new light on chaotic transients in other spatially extended systems.  相似文献   

9.
Guojun Peng  Yaolin Jiang 《Physica A》2010,389(19):4140-4148
The object of this paper is to reveal the relation between dynamics of the fractional system and its dimension defined as a sum of the orders of all involved derivatives. We take the fractional Lorenz system as example and regard one or three of its orders as bifurcation parameters. In this framework, we compute the corresponding bifurcation diagrams via an optimal Poincaré section technique developed by us and find there exist two routes to chaos when its dimension increases from some values to 3. One is the process of cascaded period-doubling bifurcations and the other is a crisis (boundary crisis) which occurs in the evolution of chaotic transient behavior. We would like to point out that our investigation is the first to find out that a fractional differential equations (FDEs) system can evolve into chaos by the crisis. Furthermore, we observe rich dynamical phenomena in these processes, such as two-stage cascaded period-doubling bifurcations, chaotic transients, and the transition from coexistence of three attractors to mono-existence of a chaotic attractor. These are new and interesting findings for FDEs systems which, to our knowledge, have not been described before.  相似文献   

10.
The notion that a deterministic nonlinear dynamical system (with relatively few degrees of freedom) can display aperiodic behavior has a strong bearing on sea clutter characterization: random-looking sea clutter may be the outcome of a chaotic process. This new approach envisages deterministic rules for the underlying sea clutter dynamics, in contrast to the stochastic approach where sea clutter is viewed as a random process with a large number of degrees of freedom. In this paper, we demonstrate, convincingly for the first time, the chaotic dynamics of sea clutter. We say so on the basis of results obtained using radar data collected from a series of extensive and thorough experiments, which have been carried out with ground-truthed sea clutter data sets at three different sites. The study includes correlation dimension analysis (based on the maximum likelihood principle) and Lyapunov spectrum analysis. The Lyapunov (Kaplan-Yorke) dimension, which is a byproduct of Lyapunov spectrum analysis, shows that it is indeed a good estimator of the correlation dimension. The Lyapunov spectrum also reveals that sea clutter is produced by a coupled system of nonlinear differential equations of order five or six. (c) 1997 American Institute of Physics.  相似文献   

11.
We demonstrate that chaos can be controlled using multiplicative exponential feedback control. Unstable fixed points, unstable limit cycles and unstable chaotic trajectories can all be stabilized using such control which is effective both for maps and flows. The control is of particular significance for systems with several degrees of freedom, as knowledge of only one variable on the desired unstable orbit is sufficient to settle the system onto that orbit. We find in all cases that the transient time is a decreasing function of the stiffness of control. But increasing the stiffness beyond an optimum value can increase the transient time. We have also used such a mechanism to control spatiotemporal chaos is a well-known coupled map lattice model.  相似文献   

12.
具睿  张亚俊  黄洪斌  赵环 《物理学报》2004,53(7):2191-2196
考虑原子的相干性和经典注入光场,利用随机微分方程给出非锁相条件下的Lorenz-Haken方程,研究失谐量、注入经典光场和原子相干性对非锁相Lorenz-Haken方程动力学特性的影响.在激光运转情形,失谐量造成光场位相的混沌,系统在不同条件下,出现四吸引子、双吸引子及单吸引子混沌状态,且体系的分数维维数较锁相条件下增加.光场失谐量、注入光场和原子相干性可抑制混沌.在双稳态运转下,光场位相为π的偶数倍或奇数倍,使光场稳定于正值和负值,故体系出现对称双稳态对,但无混沌状态. 关键词: 非锁相Lorenz-Haken方程 混沌 原子相干性 注入光场  相似文献   

13.
Transport by normal diffusion can be decomposed into hydrodynamic modes which relax exponentially toward the equilibrium state. In chaotic systems with 2 degrees of freedom, the fine scale structures of these modes are singular and fractal, characterized by a Hausdorff dimension given in terms of Ruelle's topological pressure. For long-wavelength modes, we relate the Hausdorff dimension to the diffusion coefficient and the Lyapunov exponent. This relationship is tested numerically on two Lorentz gases, one with hard repulsive forces, the other with attractive, Yukawa forces. The agreement with theory is excellent.  相似文献   

14.
We study several self-adjusting systems with noise. In our analytical and numerical studies, we find that the dynamics of the self-adjusting parameter can be accurately described with a rescaled diffusion equation. We find that adaptation to the edge of chaos, a feature previously ascribed to self-adjusting systems, is only a long-lived transient when noise is present in the system. In addition, using analytical, numerical, and experimental methods, we find that noise can cause chaotic outbreaks where the parameter reenters the chaotic regime and the system dynamics become chaotic. We find that these chaotic outbreaks have a power law distribution in length.  相似文献   

15.
张延惠  沈志朋  蔡祥吉  徐秀兰  高嵩 《物理学报》2015,64(23):230501-230501
采用Chin和Chen的动力学算法追踪粒子在体系中的运动情况, 首次研究并对比了粒子在Hénon-Heiles体系与变形Hénon-Heiles六边形体系中的混沌逃逸规律, 在Hénon-Heiles体系中, 对于不同能量范围, 分形维数与逃逸率随能量而改变, 但在变形Hénon-Heiles六边形体系中, 仅在低能区分形维数与逃逸率随能量的改变而变化, 而高能区逃逸率和分形维数趋于稳定值. 并且得到普遍规律, 即不同混沌体系中粒子的混沌逃逸率和粒子逃逸的分形维数呈现较强的线性相关性. 因而分形维数可以作为工具研究混沌体系中粒子的逃逸规律, 在介观器件设计中可以通过研究混沌电子器件的分形维数来表征粒子在器件中的传输行为.  相似文献   

16.
一类相对转动非线性动力系统的混沌运动   总被引:1,自引:0,他引:1       下载免费PDF全文
时培明  刘彬  侯东晓 《物理学报》2008,57(3):1321-1328
研究一类具有同宿轨道、异宿轨道的相对转动非线性动力系统的混沌运动. 建立具有非线性刚度、非线性阻尼和外扰激励作用的一类两质量相对转动非线性动力系统的动力学方程. 利用Melnikov方法讨论了系统的全局分岔和系统进入混沌状态的可能途径,给出了系统发生混沌的必要条件,并利用最大Lyapunov指数图,分岔图,Poincare截面图和相轨迹图进一步分析了系统的混沌行为. 关键词: 相对转动 非线性动力系统 混沌 Melnikov方法  相似文献   

17.
We review the spatio-temporal dynamical features of the Ananthakrishna model for the Portevin-Le Chatelier effect, a kind of plastic instability observed under constant strain rate deformation conditions. We then establish a qualitative correspondence between the spatio-temporal structures that evolve continuously in the instability domain and the nature of the irregularity of the scalar stress signal. Rest of the study is on quantifying the dynamical information contained in the stress signals about the spatio-temporal dynamics of the model. We show that at low applied strain rates, there is a one-to-one correspondence with the randomly nucleated isolated bursts of mobile dislocation density and the stress drops. We then show that the model equations are spatio-temporally chaotic by demonstrating the number of positive Lyapunov exponents and Lyapunov dimension scale with the system size at low and high strain rates. Using a modified algorithm for calculating correlation dimension density, we show that the stress-strain signals at low applied strain rates corresponding to spatially uncorrelated dislocation bands exhibit features of low dimensional chaos. This is made quantitative by demonstrating that the model equations can be approximately reduced to space independent model equations for the average dislocation densities, which is known to be low-dimensionally chaotic. However, the scaling regime for the correlation dimension shrinks with increasing applied strain rate due to increasing propensity for propagation of the dislocation bands. The stress signals in the partially propagating to fully propagating bands turn to have features of extensive chaos.  相似文献   

18.
构建了一类可切换的四维混沌系统,通过选择器实现这类系统间的随机切换.简要地分析了四维混沌系统平衡点的性质、混沌吸引子的相图和Lyapunov指数等特性,并设计了实现四维混沌系统切换的实际电路.利用非线性反馈控制方法实现了这类系统与其中某个系统之间的切换混沌同步.根据系统稳定性理论,得到了非线性反馈控制器的结构和系统达到混沌同步时反馈控制增益的取值范围. 关键词: 非线性反馈 混沌同步 四维混沌系统  相似文献   

19.
We briefly review some of the most relevant results that our group obtained in the past, while investigating the dynamics of the Fermi-Pasta-Ulam (FPU) models. The first result is the numerical evidence of the existence of two different kinds of transitions in the dynamics of the FPU models: (i) A stochasticity threshold (ST), characterized by a value of the energy per degree of freedom below which the overwhelming majority of the phase space trajectories are regular (vanishing Lyapunov exponents). It tends to vanish as the number N of degrees of freedom is increased. (ii) A strong stochasticity threshold (SST), characterized by a value of the energy per degree of freedom at which a crossover appears between two different power laws of the energy dependence of the largest Lyapunov exponent, which phenomenologically corresponds to the transition between weak and strong chaotic regimes. It is stable with N. The second result is the development of a Riemannian geometric theory to explain the origin of Hamiltonian chaos. Starting this theory has been motivated by the inadequacy of the approach based on homoclinic intersections to explain the origin of chaos in systems of arbitrarily large N, or arbitrarily far from quasi-integrability, or displaying a transition between weak and strong chaos. Finally, the third result stems from the search for the transition between weak and strong chaos in systems other than FPU. Actually, we found that a very sharp SST appears as the dynamical counterpart of a thermodynamic phase transition, which in turn has led, in the light of the Riemannian theory of chaos, to the development of a topological theory of phase transitions.  相似文献   

20.
We analyze chaotic behavior found in numerical simulations of the transverse pattern dynamics of a laser demonstrating that in some cases chaos originates in phase dynamics and is of low dimension. Investigations of both a Ginzburg-Landau equation for the complex field amplitude of the laser output and a Kuramoto-Sivashinsky-type equation for only the phase of that complex field equation find the same behavior. Both equations can be expanded in terms of spatial modes and in the chaotic regime the behavior of the modal amplitudes seems relatively independent. However, the fluctuations of the modal amplitudes are sufficiently correlated so that the spatiotemporal dynamics is a form of low dimensional chaos rather than a more complex turbulent behavior or even one that might merit the term spatiotemporal chaos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号