首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
ABSTRACT

Curcumin is non-fluorescent in aqueous media; however, in the vicinity of hydrophobic surface it fluoresces. This property is used to assess the use of curcumin as a surface hydrophobic probe. The surface hydrophobicity of proteins was measured by calculating the binding affinity and surface hydrophobicity index value. Surface hydrophobicity of bovine serum albumin, β-lactoglobulin, soy lipoxygenase-1, ovalbumin, and lysozyme is in the following order: bovine serum albumin?>?β-lactoglobulin?>?soy lipoxygenase-1?>?ovalbumin?>?lysozyme. The binding affinities of curcumin decreased with the decrease in surface hydrophobicity of proteins. The orders of surface hydrophobicity index value, determined using curcumin, show similar trend with the reported values of standard probes, viz. cis-parinaric acid and 1-anilinonaphthalene-8-sulfonate. The surface hydrophobicity index value of proteins determined using curcumin decreased in the presence of urea, suggesting the possible use of curcumin as a probe to determine the surface hydrophobicity of proteins.  相似文献   

2.
Chemical unfolding of bovine testicular hyaluronidase (HAase) has been studied by fluorescence spectroscopy and Fourier transformed infrared spectroscopy (FTIR). Thermodynamic parameters were determined for unfolding HAase from changes in the intrinsic fluorescence emission intensity and the formations of several possible unfolding intermediates have been identified. This was further confirmed by representation of fluorescence data in terms of ‘phase diagram’. The secondary structures of HAase have been assigned and semiquantitatively estimated from the FTIR. The occurrence of conformational change during chemical unfolding as judged by fluorescence and FTIR spectroscopy indicated that the unfolding of HAase may not follow the typical two-state model.  相似文献   

3.
采用F-4600荧光光谱仪,对尿素和二甲基亚砜两种变性剂中烷基卤脱卤酶DhaA在氨基改性介孔泡沫固定化前后的荧光光谱特征进行测定。运用荧光相图分析DhaA在两种变性剂中的去折叠过程,并结合活性残留率进行了变性过程热力学参数计算,比较固定化前后DhaA去折叠过程和热力学参数的区别。实验结果表明,DhaA催化活性随变性剂浓度增加而降低。相同变性剂浓度下,固定化DhaA能够比游离态DhaA保持更高的催化活性,在变性剂到达临界浓度之前(尿素浓度5.5 mol·L-1,DMSO浓度7 mol·L-1),氨基改性介孔泡沫的稳定化作用显著。DhaA在尿素诱导下的变性过程符合“二态模型”,而在DMSO诱导下符合“三态模型”,DhaA中间态出现在浓度为5.6 mol·L-1。氨基改性介孔泡沫固定化不改变DhaA变性过程,但能够提高DhaA的去折叠热力学参数。在尿素诱导下,计算得到的DhaA初始吉布斯自由能变ΔG(H2O)为8.51 kcal·mol-1,固定化后ΔG(H2O)提高为9.55 kcal·mol-1;但由于尿素分子容易通过静电作用进入氨基介孔泡沫孔道,固定化后DhaA的溶液可及面积m由3.69 kcal·(mol·mol·L-1)-1增大到4.00 kcal·(mol·mol·L-1)-1,孔道内的氨基、羟基能够通过氢键作用增强DhaA的刚性,从而有效的降低了尿素可及面积增加带来的影响,提高了DhaA的尿素耐受性。在DMSO诱导下,计算发现游离态与固定化DhaA在折叠态向中间态转变过程中的ΔG(H2O)均为12.12 kcal·mol-1,由于孔道内的氨基、羟基能够有效阻碍非极性DMSO分子的进入,造成m从3.39 kcal·(mol·mol·L-1)-1降低为2.30 kcal·(mol·mol·L-1)-1;当DhaA从中间态向去折叠态转化时,DhaA内部疏水基团暴露导致m增加,由于孔道内极性微环境作用,固定化DhaA的m值(4.40 kcal·(mol·mol·L-1)-1)仍然低于游离态DhaA(4.94 kcal·(mol·mol·L-1)-1)。荧光光谱法研究固定化对DhaA去折叠过程及热力学参数的影响是深入研究DhaA稳定性的有效手段,能够为其他生物酶的稳定化机理研究提供方法指导。  相似文献   

4.
Tryptophan fluorescence is extremely useful to monitor structural conformational transitions in proteins. Denaturant-induced unfolding of azurin and ascorbate oxidase has been studied by dynamic fluorescence measurements in the frequency domain and the results have been interpreted in terms of continuous distribution of lifetimes. The data add new information on the unfolding mechanism that was previously analyzed by steady-state emission spectroscopy. In particular, the existence of multiple, parallel unfolding pathways may be envisaged and correlated, in both cases, to the two protein structures. The effect of metal depletion has been also characterized by fluorescence lifetime measurements. In the case of azurin, a monomeric protein, the data demonstrate that copper removal yields a totally different unfolding pathways with respect to the holo protein, indicating that metal ion plays a fundamental structural role in the wild type, native protein. In the case of ascorbate oxidase a dimer of 140 kDa, only minor effects have been detected by copper removal. However, the analysis of the fluorescence decay in presence of different amounts of guanidinium hydrochloride gives new important insights on the unfolding intermediates. In particular the data support the hypothesis of a partial exposure of an outer layer of dimer at intermediate denaturant concentration. This ability of dynamic fluorescence to pinpoint the presence of structural micro-heterogeneity in the unfolding pathways of proteins demonstrates the greater power of this technique compared to the most commonly used steady-state measurements.  相似文献   

5.
The conformational transitions in an oligomeric and high molecular weight class II α-mannosidase from Aspergillus fischeri were examined using fluorescence and CD spectroscopy under chemical, thermal and acid denaturing conditions. The enzyme lost the activity first and then the overall folded conformation and secondary structure. The midpoint values of GdnHCl mediated changes measured by inactivation; fluorescence and negative ellipticity were 0.48 M, 1.5 M and 1.9 M, respectively. The protein almost completely unfolded in 4.0 M GdnHCl but not at 90 °C. The inactivation and unfolding were irreversible. At pH 2.0, the protein exhibited molten-globule like intermediate with rearranged secondary and tertiary structures and exposed hydrophobic amino acids on the surface. This species showed increased accessibility of Trp to the quenchers and got denatured with GdnHCl in a different manner. The insoluble aggregates of a thermally denatured protein could be detected only in the presence of 0.25–0.75 M GdnHCl.  相似文献   

6.
Urea and alkyl urea derivatives, which posses a free N-H moiety in the urea molecular framework is responsible for the fluorescence quenching of BSA. Fluorescence quenching accompanied with a blue initially and subsequently a red shift in the emission maximum of BSA is observed on the addition of urea derivatives containing N-H moieties. On the contrary, a fluorescence enhancement accompanied with a shift in the emission maximum towards the blue region is observed on the addition of tetramethylurea (TMU). Urea derivatives, which posses a free N-H moiety acts as a perfect denaturant by direct hydrogen-bonding interaction with BSA resulting in the unfolding process. The unfolding of the buried tryptophan moieties to the aqueous phase does not occur, when all the N-H moieties in the urea are methyl substituted (TMU). Fluorescence spectral techniques reveal that the direct hydrogen-bonding interaction of the N-H moiety of urea molecular framework with the carbonyl oxygen moieties of BSA results in the unfolding of the tryptophan moieties to the aqueous phase, while that of the carbonyl oxygen of urea with the N-H moieties of BSA is definitely not involved in the denaturation process. Steady state and time-resolved fluorescence studies illustrate that the extent of protein folding occurs at a relatively lower concentration of unsymmetrical alkyl urea derivatives (butyl urea (BU) and ethyl urea (EU)), compared to that of urea.  相似文献   

7.
The structural feature of unfolding intermediate of pokeweed anti-viral protein (PAP) was characterized using time-resolved fluorescence spectroscopic methods to elucidate protein folding/unfolding process. CD and fluorescence spectra consistently demonstrated that the unfolding of PAP completed at 4 M of guanidine hydrochloride (GuHCl). The fluorescence resonance energy transfer (FRET) and time-resolve fluorescence depolarization analysis of Trp208 and Trp237 located in the C-terminal domain of PAP suggested that peculiar unfolding intermediate populated before reaching to the unfolding state. The FRET distance of Trp237 to Tyr182 was extended to more than 28 Å with keeping the compact conformation in the unfolding intermediate state populated in the presence of 2 M GuHCl. On the other hand, Trp208 maintained the energy transfer pair with Tyr72 near the active site, although the rotational freedom was increased a little. There results suggest that the most distinguished structural feature of the unfolding intermediate of PAP is the separation of C-terminal domain from N-terminal domain. FRET and fluorescence depolarization studies also showed that C-terminal domain would be more separated to liberate the segmental motions of Trp208 and Trp237 distinctly at the unfolding state.  相似文献   

8.
荧光光谱法研究盐酸胍浓度不同时变性胰蛋白酶的构象变化   总被引:13,自引:2,他引:11  
蛋白变性过程中间体的存在是蛋白变性及复性动力学研究中不可缺少的证据。以胰蛋白酶为模型蛋白 ,用荧光光谱法系统地研究了在不同浓度变性剂盐酸胍存在时胰蛋白酶构象的变化 ,并与活性数据进行了对比。发现胰蛋白酶荧光光谱发射波长随变性剂盐酸胍浓度增大而逐渐增大 ,并且当盐酸胍浓度达到 2mol·L- 1 时胰蛋白酶的最大发射波长达到最大值 ,其后随盐酸胍浓度的增大最大发射波长反而逐渐减小 ,当盐酸胍浓度大于 3mol·L- 1 呈现不变的趋势。也就是说 ,在低浓度变性剂环境下 ,胰蛋白酶存在着一个与天然态和完全变性态的分子构象都不同的中间体状态 ,这个中间体状态的荧光发射波长最大 ,荧光发射强度也最大 ,而以此状态为复性起点 ,最终得到的复性产率也最低。对此原因从分子结构的基础上进行了探讨。  相似文献   

9.
本文利用荧光光谱和园二色光谱了新开花粉蛋白的盐酸胍去折叠过程。结果显示:新开花粉蛋白的盐酸胍去折叠是一个只包含天然蛋白和变性终态的二态过程,与已经报道的天花粉蛋白的盐酸胍去折叠的过程不同。  相似文献   

10.
The native form of serum albumin is the most important soluble protein in the body plasma. In order to investigate the structural changes of Bovine serum albumin (BSA) during its unfolding in the presence of urea, a small-angle neutron scattering (SANS) study was performed. The scattering curves of dilute solutions of BSA with different concentrations of urea in D2O at pH 7.2 ± 0.2 were measured at room temperature. The scattering profile was fitted to a prolate ellipsoidal shape (a, b, b) of the protein witha = 52.2 Å andb = 24.2 Å. The change in the dimensions of the protein as it unfolds was found to be anisotropic. The radius of gyration of the compact form of the protein in solution decreased as the urea concentration was increased.  相似文献   

11.
Small angle neutron scattering (SANS) has been used to study conformational changes in protein bovine serum albumin (BSA) as induced by varying temperature and in the presence of protein denaturating agents urea and surfactant. BSA has prolate ellipsoidal shape and is found to be stable up to 60°C above which it denaturates and subsequently leads to aggregation. The protein solution exhibits a fractal structure at temperatures above 64°C, with fractal dimension increasing with temperature. BSA protein is found to unfold in the presence of urea at concentrations greater than 4 M and acquires a random coil Gaussian chain conformation. The conformation of the unfolded protein in the presence of surfactant has been determined directly using contrast variation SANS measurements by contrast matching surfactant molecules. The protein acquires a random coil Gaussian conformation on unfolding with its radius of gyration increasing with increase in surfactant concentration   相似文献   

12.
Structural modifications of ovalbumin in presence of different concentration of guanidine hydrochloride (Gdn HCl) and glucose were investigated by using intrinsic fluorescence, Fourier transform infra-red spectroscopy, circular dichroism and 8-anilino-1-naphthalene-sulphonic acid, to confirm that partially folded intermediates of ovalbumin lead to aggregation. The two partially folded intermediates of ovalbumin were observed one at 1 M Gdn HCl and another in the presence of 20 mM glucose at 3 M Gdn HCl. Both intermediates exist as compact states with altered intrinsic fluorescence, prominent β-sheet secondary structure and enhanced ANS binding. Ovalbumin in the presence of glucose required more concentration of Gdn HCl (3 M) to exist as an intermediate state than control (1 M). Such alpha-helix/beta-sheet transition of proteins is a crucial step in amyloidogenic diseases and represents an internal rearrangement of local contacts in an already folded protein. Further, incubation for 24 h resulted in the formation of aggregates as detected by thioflavin T-assay. On further increasing the concentration of glucose to 50 mM and incubation time for various days resulted in the formation of molten globule state of ovalbumin at 6th day. Later on, at 10th day advanced glycated end products were observed.  相似文献   

13.
Nile red bound to human serum albumin (HSA) shows an order of magnitude increase in the probe's fluorescence intensity. Here, we report on the fluorescence characteristics of the probe-protein complex in Trizma buffer (pH 7.1), urea, guanidine hydrochloride, and AOT/isooctane/buffer reverse micelles using both steady—state and time-resolved fluorescence techniques. With a view to illustrating the use of extrinsic probe fluorescence spectroscopy in protein research, we demonstrate that protein unfolding can be observed through measurements of the probe's time-resolved anisotropy and steady-state fluorescence spectrum. Moreover, this shows that thermal unfolding is fundamentally different from using denaturant, with respect to changes in both the nanosecond diffusional rotation of the probe at intermediate stages and in the denatured protein's structure. Also, the large Stokes shift of Nile red allows the changes in the environment of the probe-protein complex in reverse micelles of varying waterpool size to be easily identified in the steady-state fluorescence. This was not seen in earlier work exploiting the intrinsic tryptophan fluorescence of HSA and further demonstrates the complementary information that extrinsic fluorescence probe studies can offer protein science. We discuss the complex acrylamide quenching characteristics of Nile red bound to HSA in terms of the possibility of at least two binding sites for the probe and the effect of acrylamide on the probe-protein structure at very high quencher concentrations.  相似文献   

14.
Interactions involving calixarene and its derivatives are of major importance due to their widespread applications as unique hosts. Fluorescence from a common probe pyrene is used to study interactions involving calix[4]resorcinarene [1a] and its tetra-morpholine derivative [1b] in 1 M aqueous NaOH. These compounds efficiently quench the pyrene fluorescence. A comparison with the fluorescence quenching behavior of N-methylmorpholine clearly indicates the presence of long-range interactions involving 1a and 1b; the interactions are specific to the calixarene molecular framework. This is not the case for a tetra-nitro-substituted calix[4]arene [2b], an electron/charge acceptor quencher, as p-nitrophenol also shows similar interactions with pyrene. Effectiveness of cesium as the quencher of pyrene fluorescence is reduced in the presence of electron/charge donating 1b; fluorescence enhancement is observed upon addition of cesium as the concentration of 1b is increased in the solution. The role of calixarene framework in interactions involving such compounds is established.  相似文献   

15.
FTIR光谱法研究天花粉蛋白的热去折叠过程   总被引:4,自引:0,他引:4  
本文利用FTIR光谱技术和计算机辅助解析技术(二阶导数、去卷积和曲线拟合)研究了天花粉蛋白的热诱导去折叠过程。结果表明:在25~85℃温度范围内,天花粉蛋白的热去折叠是一个不可逆的分子间聚集的过程;二级结构随温度的变化暗示了折叠中间体的存在。  相似文献   

16.
Abstract

The activity of cellulase irradiated at various temperatures was examined as a function of irradiation dose. The effect of calcium ions in radiation inactivation of cellulase at irradiation temperature of 30°C was studied by using calcium sulfate. The calcium ions have a protective ability against radiation caused inactivation of cellulase by scavenging species such as OH? formed by irradiation of cellulase aqueous solution, in which the effective concentration range of the calcium ions was ~ 10?3 M. The calcium ions do not act for the heat inactivation of the enzyme and the enzyme hydrolysis of filter paper or chaff as an activator because the calcium ions do not associate with the enzyme to form a calcium ion-enzyme complex.  相似文献   

17.

The current paper deals with the effects of convective transport and heterogeneous thermal conditions on the uniformity of a high pressure induced inactivation by means of mathematical modelling and numerical simulation. The inactivation of B. subtilis α-amylase dissolved in TRIS-buffer is chosen as an example for a pressure induced transformation. Two different processes are considered. The first represents a direct treatment where the pressure increase is achieved by mass augmentation of the enzyme solution. The second is an indirect treatment, where the enzyme solution is packed and the pressure increase is achieved by inflow of a pressure medium into the pressure chamber. Aspects of the viscosity of the matrix as well as the heat transfer properties of the packaging material are considered. In both cases, significant process uniformities can be determined.  相似文献   

18.
We measured fluorescence lifetimes and fluorescence spectra (excitation and emission) of tryptophan residues of α1-acid glycoprotein (three Trp residues) and β-lactoglobulin (two Trp residues) in absence and presence of 450 μM progesterone. Progesterone binds only to α1-acid glycoprotein. In absence of progesterone, each of the two proteins displays three fluorescence lifetimes. Addition of progesterone induces a partial inhibition of the S o 1 L a transition without affecting fluorescence lifetimes. The same experiments performed in presence of denatured proteins in 6 M guanidine show that addition of progesterone inhibits partially the S o 1 L a transition and its peak is 15 nm shifted to the red compared to that obtained for native proteins. However, the S o 1 L b transition position peak is not affected by protein denaturation. Thus, the tertiary structure of the protein plays an important role by modulating the tryptophan electronic transitions. Fluorescence emission decay recorded in absence and presence of progesterone yields three fluorescence lifetimes whether proteins are denatured or not. Thus, protein tertiary structure is not responsible for the presence of three fluorescence lifetimes. These characterize tryptophan substructures reached at the excited states and which population (pre-exponential values) depend on the tryptophan residues interaction with their microenvironment(s) and thus on the global conformation of the protein.  相似文献   

19.

Protein folding or unfolding can lead to the population of intermediates or partially unfolded conformations that have a high aggregation tendency. Some of these states associate in vivo to form fibrillar structures. These fibrils are the hallmark of molecular diseases such as Alzheimer's disease. It has been suggested that in vitro fibril formation is a generic property of all proteins. Insulin has been chosen as a model protein to study the process of fibrillation with Fourier-transform infrared spectroscopy. It is found that the formation of fibrils is preceded by amorphous aggregation. We also investigated the effect of hydrostatic pressure on insulin fibrils. The observed spectral changes are interpreted in terms of fibril dissociation into protofilaments. Preliminary results indicate that pressure is an interesting tool to characterize the interactions that maintain the fibril structure.  相似文献   

20.
In mammalian cells, the heme-regulated inhibitor (HRI) plays a critical role in the regulation of protein synthesis at the initiation step through phosphorylation of α-subunit of the eukaryotic initiation factor 2 (eIF2). In this study we have cloned and performed biophysical characterization of the kinase catalytic domain (KD) of rabbit HRI. The KD described here comprises kinase 1, the kinase insertion domain (KI) and kinase 2. We report here the existence of an active and stable monomer of HRI (KD). The HRI (KD) containing three tryptophan residues was examined for its conformational transitions occurring under various denaturing conditions using steady-state and time-resolved tryptophan fluorescence, circular dichroism (CD) and hydrophobic dye binding. The parameter A and phase diagram analysis revealed multi-state unfolding and existence of three stable intermediates during guanidine hydrochloride (Gdn-HCl) induced unfolding of HRI (KD). The protein treated with 6 M Gdn-HCl showed collisional and static mechanism of acrylamide quenching and the constants (K sv  = 3.08 M−1and K s = 5.62 M−1) were resolved using time resolved fluorescence titration. Based on pH, guanidine hydrochloride and temperature mediated transitions, HRI (KD) appears to exemplify a rigid molten globule-like intermediate with compact secondary structure, altered tertiary structure and exposed hydrophobic patches at pH 3.0. The results indicate the inherent structural stability of HRI (KD), a member of the class of stress response proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号