首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X-ray absorption fine structure (XAFS) spectroscopy is a powerful technique for the investigation of the local environment around selected atoms in condensed matter. XAFS under pressure is an important method for the synchrotron source. We design a cell for a high pressure XAFS experiment. Sintered boron carbide is used as the anvils of this high pressure cell in order to obtain a full XAFS spectrum free from diffraction peaks. In addition, a hydraulic pump was adopted to make in-suit pressure modulation. High quality XAFS spectra of ZrH2 under high pressure (up to 13 Gpa) were obtained by this cell.  相似文献   

2.
In combination with a single‐crystal diamond anvil cell (DAC), a polycapillary half‐lens (PHL) re‐focusing optics has been used to perform high‐pressure extended X‐ray absorption fine‐structure measurements. It is found that a large divergent X‐ray beam induced by the PHL leads the Bragg glitches from single‐crystal diamond to be broadened significantly and the intensity of the glitches to be reduced strongly so that most of the DAC glitches are efficiently suppressed. The remaining glitches can be easily removed by rotating the DAC by a few degrees with respect to the X‐ray beam. Accurate X‐ray absorption fine‐structure (XAFS) spectra of polycrystalline Ge powder with a glitch‐free energy range from ?200 to 800 eV relative to the Ge absorption edge are obtained using this method at high pressures up to 23.7 GPa, demonstrating the capability of PHL optics in eliminating the DAC glitches for high‐pressure XAFS experiments. This approach brings new possibilities to perform XAFS measurements using a DAC up to ultrahigh pressures.  相似文献   

3.
A confocal set‐up is presented that improves micro‐XRF and XAFS experiments with high‐pressure diamond‐anvil cells (DACs). In this experiment a probing volume is defined by the focus of the incoming synchrotron radiation beam and that of a polycapillary X‐ray half‐lens with a very long working distance, which is placed in front of the fluorescence detector. This set‐up enhances the quality of the fluorescence and XAFS spectra, and thus the sensitivity for detecting elements at low concentrations. It efficiently suppresses signal from outside the sample chamber, which stems from elastic and inelastic scattering of the incoming beam by the diamond anvils as well as from excitation of fluorescence from the body of the DAC.  相似文献   

4.
金刚石压腔高温高压原位谱学研究的评述   总被引:8,自引:2,他引:6  
金刚石压腔 (DAC)已经可以达到 5 5 0 GPa的压力和 6 0 0 0 K的温度 ,其高温高压谱学原位测量已经成为现代科学的一种重要的手段和方法。目前利用 DAC可以进行光谱学 (拉曼光谱、红外光谱、荧光光谱 )、衍射 (X射线衍射和 XAFS)、布里渊散射、核磁共振 (NMR)以及穆斯堡尔谱的高温高压原位研究。设计用于各种不同需要的便宜的压腔、合适的谱学测量方法以及压力内标物质是进一步拓宽 DAC应用的发展方向。  相似文献   

5.
An in‐vacuum undulator (IVU) with a tapered configuration was installed in the 8C nanoprobe/XAFS beamlime (BL8C) of the Pohang Light Source in Korea for hard X‐ray nanoprobe and X‐ray absorption fine‐structure (XAFS) experiments. It has been operated in planar mode for the nanoprobe experiments, while gap‐scan and tapered modes have been used alternatively for XAFS experiments. To examine the features of the BL8C IVU for XAFS experiments, spectral distributions were obtained theoretically and experimentally as functions of the gap and gap taper. Beam profiles at a cross section of the X‐ray beam were acquired using a slit to visualize the intensity distributions which depend on the gap, degree of tapering and harmonic energies. To demonstrate the effect of tapering around the lower limit of the third‐harmonic energy, V K‐edge XAFS spectra were obtained in each mode. Owing to the large X‐ray intensity variation around this energy, XAFS spectra of the planar and gap‐scan modes show considerable spectral distortions in comparison with the tapered mode. This indicates that the tapered mode, owing to the smooth X‐ray intensity profile at the expense of the highest and most stable intensity, can be an alternative for XAFS experiments where the gap‐scan mode gives a considerable intensity variation; it is also suitable for quick‐XAFS scanning.  相似文献   

6.
We demonstrate the sensitivity of X‐ray absorption fine‐structure (XAFS) measurements to the earliest stages of decomposition in Al alloys, i.e. just a few minutes after quenching. XAFS is one of the few applicable experimental approaches to this regime. Three different AlCu(Mg) samples were investigated by XAFS at the Cu K edge. Significant changes of the XAFS can be detected in the course of the decomposition in these alloys during the first 15 minutes. Actually, these changes correspond to relaxations of the nearest neighbours towards the absorbing Cu atoms. The Fourier transformation of the XAFS spectra thus leads to a pseudo radial distribution function which reflects this relaxation. In addition, XAFS measurements of the S‐phase of AlCuMg are used to decide in favour of the Perlitz and Westgren model for the S‐phase. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
In this paper results are presented from fluorescence‐yield X‐ray absorption fine‐structure spectroscopy measurements with a new seven‐cell silicon drift detector (SDD) module. The complete module, including an integrated circuit for the detector readout, was developed and realised at DESY utilizing a monolithic seven‐cell SDD. The new detector module is optimized for applications like XAFS which require an energy resolution of ~250–300 eV (FWHM Mn Kα) at high count rates. Measurements during the commissioning phase proved the excellent performance for this type of application.  相似文献   

8.
A new program called miXAFS for the analysis of X‐ray absorption fine‐structure (XAFS) data is presented. miXAFS can analyze the XAFS functions simultaneously for all measured X‐ray absorption edges of the constituent elements in a sample under the constraints for the structural parameters over the edges. The program provides a surface plot of the R‐factor as a function of two structural parameters, which is useful to validate the optimized structural parameters. The structural parameters can be obtained from the XAFS data in a few steps using the setting file and batch process. The program, which is coded in MATLAB and freely available, runs on Macintosh and Windows operating systems. It has a graphical user interface and loads experimental data and XAFS functions in a variety of ASCII data formats.  相似文献   

9.
A microprobe system has been installed on the nanoprobe/XAFS beamline (BL8C) at PLS‐II, South Korea. Owing to the reproducible switch of the gap of the in‐vacuum undulator (IVU), the intense and brilliant hard X‐ray beam of an IVU can be used in X‐ray fluorescence (XRF) and X‐ray absorption fine‐structure (XAFS) experiments. For high‐spatial‐resolution microprobe experiments a Kirkpatrick–Baez mirror system has been used to focus the millimeter‐sized X‐ray beam to a micrometer‐sized beam. The performance of this system was examined by a combination of micro‐XRF imaging and micro‐XAFS of a beetle wing. These results indicate that the microprobe system of the BL8C can be used to obtain the distributions of trace elements and chemical and structural information of complex materials.  相似文献   

10.
陈海燕  向士凯  颜小珍  郑黎荣  张毅  刘盛刚  毕延 《中国物理 B》2016,25(10):108103-108103
As a widely used pressure calibrator, the structural phase transitions of bismuth from phase I, to phase II, to phase III,and then to phase V with increasing pressure at 300 K have been widely confirmed. However, there are different structural versions for phase III, most of which are determined by x-ray diffraction(XRD) technology. Using x-ray absorption fine structure(XAFS) measurements combined with ab initio calculations, we show that the proposed incommensurate composite structure of bismuth of the three configurations is the best option. An abnormal continuous increase of the nearest-neighbor distance of phase III with elevated pressure is also observed. The electronic structure transformation from semimetal to metal is responsible for the complex behavior of structure transformation.  相似文献   

11.
X‐ray absorption fine‐structure (XAFS) data were obtained for the V K‐edge for a series of anisotropic single crystals of (CrxV1–x)2O3. The data and the results were compared for the as‐prepared bulk single crystals (measured in fluorescence in two different orientations) and those ground to powder (measured in transmission). For the bulk single crystals, the glancing‐emergent‐angle (GEA) method was used to minimize fluorescence distortion. The reliability of the GEA technique was tested by comparing the polarization‐weighted single‐crystal XAFS data with the experimental powder data. These data were found to be in excellent agreement throughout the entire energy range. Thus, it was possible to reliably measure individual V–V contributions parallel and perpendicular to the c axis of the single crystals, i.e. those unavailable by powder data XAFS analysis. These experiments demonstrate that GEA is a premiere method for non‐destructive high‐photon‐count in situ studies of local structure in bulk single crystals.  相似文献   

12.
A new approach is introduced for determining X‐ray absorption spectroscopy (XAS) spectra on absolute and relative scales using multiple solutions with different concentrations by the characterization and correction of experimental systematics. This hybrid technique is a development of standard X‐ray absorption fine structure (XAFS) along the lines of the high‐accuracy X‐ray extended range technique (XERT) but with applicability to solutions, dilute systems and cold cell environments. This methodology has been applied to determining absolute XAS of bis(N‐n‐propyl‐salicylaldiminato) nickel(II) and bis(N‐i‐propyl‐salicylaldiminato) nickel(II) complexes with square planar and tetrahedral structures in 15 mM and 1.5 mM dilute solutions. It is demonstrated that transmission XAS from dilute systems can provide excellent X‐ray absorption near‐edge structure (XANES) and XAFS spectra, and that transmission measurements can provide accurate measurement of subtle differences including coordination geometries. For the first time, (transmission) XAS of the isomers have been determined from low‐concentration solutions on an absolute scale with a 1–5% accuracy, and with relative precision of 0.1% to 0.2% in the active XANES and XAFS regions after inclusion of systematic corrections.  相似文献   

13.
Apparatus for a technique based on the dispersive optics of X‐ray absorption fine structure (XAFS) has been developed at beamline BL‐5 of the Synchrotron Radiation Center of Ritsumeikan University. The vertical axis of the cross section of the synchrotron light is used to disperse the X‐ray energy using a cylindrical polychromator and the horizontal axis is used for the spatially resolved analysis with a pixel array detector. The vertically dispersive XAFS (VDXAFS) instrument was designed to analyze the dynamic changeover of the inhomogeneous electrode reaction of secondary batteries. The line‐shaped X‐ray beam is transmitted through the electrode sample, and then the dispersed transmitted X‐rays are detected by a two‐dimensional detector. An array of XAFS spectra in the linear footprint of the transmitted X‐ray on the sample is obtained with the time resolution of the repetition frequency of the detector. Sequential measurements of the space‐resolved XAFS data are possible with the VDXAFS instrument. The time and spatial resolutions of the VDXAFS instrument depend on the flux density of the available X‐ray beam and the size of the light source, and they were estimated as 1 s and 100 µm, respectively. The electrode reaction of the LiFePO4 lithium ion battery was analyzed during the constant current charging process and during the charging process after potential jumping.  相似文献   

14.
介绍了北京和合肥同步辐射XAFS实验站的性能参数和结构, 及在物理,化学,材料和生命科学等研究领域的应用,便于国内广大用户更好地利用其开展高质量的研究工作。  相似文献   

15.
The near-edge processes, such as X-ray absorption fine structure (XAFS) and resonant Raman scattering (RRS), are not incorporated in the available theoretical attenuation coefficients, which are known to be reliable at energies away from the shell/subshell ionization thresholds of the attenuator element. Theoretical coefficients are generally used to estimate matrix corrections in routine quantitative elemental analysis based on various X-ray emission techniques. A tabulation of characteristic X-ray energies across the periodic table is provided where those X-rays are expected to alter the attenuation coefficients due to XAFS from a particular shell/subshell of the attenuator element. The influence of XAFS to the attenuation coefficient depends upon the atomic environment and the photoelectron wave vector, i.e., difference in energies of incident X-ray and the shell/subshell ionization threshold of the attenuator element. Further, the XAFS at a shell/subshell will significantly alter the total attenuation coefficient if the jump ratio at that shell/subshell is large, e.g., the K shell, L3 subshell and M5 subshell. The tabulations can be considered as guidelines so as to know what can be expected due to XAFS in typical photon-induced X-ray emission spectrometry.  相似文献   

16.
Fe K-edge X-ray absorption fine structure (XAFS) measurements were performed in order to elucidate the formation mechanism of single-walled carbon nanotubes (SWCNTs) grown on natural magnesite by pyrolyzing methane gas. It was clearly shown by XAFS analyses that iron metal fine particles, which were reduced from iron oxides by methane gas, worked as a catalyst for SWCNT growth. Structural characteristics of the initial iron state in the natural magnesite were also discussed.  相似文献   

17.
The 15th International Conference on X-ray Absorption Fine Structure (XAFS15) was held at the Pullman Beijing West Wanda Hotel in Beijing, China, on July 22–28, 2012. The conference was chaired by Ziyu Wu (Chinese Academy of Sciences). In conjunction with XAFS15, the workshop “XAFS theory and nano particles” was held July 18–20, 2012, in Chiba, Japan, and chaired by T. Fujikawa.  相似文献   

18.
X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) under pressure are probes of local order and microscopic magnetic properties. XMCD is a selective probe that has access to a large variety of elements. The dispersive extended X-ray absorption fine structure (EXAFS) station at SOLEIL (ODE beam line) provides the possibility to perform numerous pressure XAS and XMCD experiments with an excellent statistic. The main advantages of dispersive XAFS are the focusing optics, the short acquisition time (few μs) and great stability during the measurements due to the absence of any mechanical movement. These advantages allow the study of small samples, 70 μm at SOLEIL, which is mandatory in the case of high-pressure studies. We present the new ODE beam line at SOLEIL and its first high-pressure XMCD results.  相似文献   

19.
Thermodynamic properties, anharmonic effects and structural determination of fcc crystals have been studied based on the theoretical and experimental Debye–Waller factors presented in terms of cumulant expansion up to the third order, thermal expansion coefficient, X-ray absorption fine structure (XAFS) spectra and their Fourier transform magnitudes. The advances in these studies are performed by the further development of the anharmonic correlated Einstein model primary only for approximating three first XAFS cumulants into the method using that all the considered theoretical and experimental XAFS parameters have been provided based on only the calculated and measured second cumulants. The obtained cumulants describe the anharmonic effects in XAFS contributing to the accurate structural determination. Numerical results for Cu are found to be in good agreement with the experimental values extracted by using the present advanced method and with those obtained by the other measurements.  相似文献   

20.
In the present work a data analysis approach, based on XAFS data, is proposed for the identification of most probable binding motifs of unknown mononuclear zinc sites in metalloproteins. This approach combines multiple‐scattering EXAFS analysis performed within the rigid‐body refinement scheme, non‐muffin‐tin ab initio XANES simulations, average structural information on amino acids and metal binding clusters provided by the Protein Data Bank, and Debye–Waller factor calculations based on density functional theory. The efficiency of the method is tested by using three reference zinc proteins for which the local structure around the metal is already known from protein crystallography. To show the applicability of the present analysis to structures not deposited in the Protein Data Bank, the XAFS spectra of six mononuclear zinc binding sites present in diverse membrane proteins, for which we have previously proposed the coordinating amino acids by applying a similar approach, is also reported. By comparing the Zn K‐edge XAFS features exhibited by these proteins with those pertaining to the reference structures, key spectral characteristics, related to specific binding motifs, are observed. These case studies exemplify the combined data analysis proposed and further support its validity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号