首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
用太赫兹时域光谱技术研究了室温条件下的多晶天冬酰胺样品的光谱特征,得到了相应的吸收谱和折射率.这说明样品在这个波段存在光谱响应,可以用来探测分子的结构和振动情况.研究发现,天冬酰胺在实验测量有效光谱范围(0.5—2.4THz)内有两个吸收峰,一个是位于1.642—1.758THz的宽带峰,另一个是位于2.266THz的吸收峰.用密度泛函方法在B3LYP/6-31+G(d,p)基组下做了模拟计算,并对获得的频谱进行了解析,计算得到的峰位与实验结果符合较好. 关键词: 太赫兹 时域光谱技术 氨基酸 天冬酰胺  相似文献   

2.
太赫兹时域光谱技术可以分辨化合物结构上的微小差异并应用于物质检测与分析,为有机化工产品的鉴别及更宽有效光谱区的测试提供了新的实验方法.本文运用太赫兹时域光谱技术研究了甲醇、防冻液和刹车油在太赫兹波段的光学特性,在室温氮气环境中,得到了样品的时域谱和在0.2~2.5THz波段的吸收谱.甲醇和防冻液、刹车油在此波段的吸收谱存在显著差异,甲醇的吸收峰位于0.35THz、0.72THz处,防冻液和刹车油的主要吸收峰位于0.62THz处.实验表明,用太赫兹时域光谱技术可以检测防冻液和刹车油里是否掺有甲醇,进而判断其质量的优劣.  相似文献   

3.
用太赫兹时域光谱技术研究不同加热时间后水合TiO2在0.2~1 THz波段的THz时域谱、频域谱、吸收谱、折射率谱和复介电常数。结果表明水合TiO2在THz波段出现明显吸收峰,随加热时间增加,含水量降低,吸收系数减小;样品折射率变化位置与吸收峰位置相对应。水合TiO2在太赫兹波中的电极化响应与频率不存在明显的关系,介电损耗随频率的升高先降低后趋于稳定,介电响应均随加热时间延长而减弱。  相似文献   

4.
有机磷农药甲基对硫磷的太赫兹(THz)光谱研究   总被引:1,自引:0,他引:1  
运用太赫兹时域光谱技术(THz-TDS)与理论模拟相结合的方法研究了有机磷农药甲基对硫磷在THz波段的光谱特性。在室温氮气环境中得到了样品在0.2~2.0 THz波段的吸收谱和折射率谱。表明其特征吸收峰分别位于0.65,1.33,1.81和1.91 THz处,其平均折射率为1.39。同时运用密度泛函理论(DFT)计算了甲基对硫磷分子的结构及其在太赫兹波段的振动频率,计算结果与实验数据吻合较好。研究结果表明,实验光谱的特征吸收峰是由分子的集体振动及扭转形成,不同的吸收峰位对应分子不同的振转模式。  相似文献   

5.
太赫兹时域光谱(THz-TDS)技术对物质进行识别和定量分析是太赫兹应用领域的一个研究热点。文章报道了14种头孢类抗生素纯品在0.2~2.6 THz波段的共振吸收谱和折射率谱,其中8种特征吸收峰明显。没有明显特征吸收峰的抗生素样品在该波段的折射率谱也有较为明显差异。这些结果是利用太赫兹时域光谱技术鉴别抗生素品种的依据。利用纯品太赫兹吸收谱,对两个不同厂家生产的头孢克肟药品进行了主成分定量评估,分别得到了头孢克肟在药品中的含量,它们与药品包装上标定含量的相对误差分别为9.38%和0.92%。证明了太赫兹技术在药品检测中的可靠性和良好的应用前景。  相似文献   

6.
组氨酸和精氨酸的太赫兹光谱研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用太赫兹时域光谱(THz-TDS)测试和理论模拟相结合的方法,研究了组氨酸和精氨酸在THz波段的光谱特性.THz-TDS测试的有效光谱范围为0.2—2.8 THz,在该波段得到样品的特征吸收峰分别位于0.88,1.64,2.23 THz(组氨酸)和0.99,1.47,2.60 THz(精氨酸);运用Gaussian03半经验理论PM3和AM1算法,计算了两种分子在0.1—10.0 THz波段的振动吸收谱,结果表明它们在该波段均具有多个特征吸收,其中在0.2—2.8 THz波段的吸收峰位与实验吸收峰位相互对应并且符合较好;给出了与光谱特征吸收对应的分子振转模型,为认识分子对THz波的响应机制提供了帮助,也为分子鉴别及更宽有效光谱区的实验测试研究提供了科学依据. 关键词: 太赫兹(THz) 半经验理论 THz时域光谱 氨基酸  相似文献   

7.
许多氨基酸分子的平动、转动及振动均落在太赫兹(THz)波段,通过其在THz波段的特征指纹峰,可以对氨基酸进行定性及定量研究.本文利用太赫兹时域光谱技术测量了DL-谷氨酸及其一水合物在0.5—3.0 THz的室温太赫兹吸收谱,发现二者的太赫兹特征峰存在明显差异.基于DL-谷氨酸一水合物特征吸收峰(1.24 THz)在不同样品浓度下吸收幅度的变化,对二者的混合样品进行了定量分析,并对定量解析式进行了反推验证.最后,基于密度泛函理论对DL-谷氨酸及其一水合物进行了量化模拟,在理论数据与实验峰匹配情况下,对实验所得THz吸收峰的来源进行了讨论归纳.研究结果表明, DL-谷氨酸及其一水合物的THz特征峰(<2.80 THz)来源于分子间作用模式,其余吸收峰来源于分子间与分子内的共同作用模式.  相似文献   

8.
次黄嘌呤及其核苷的THz光谱   总被引:1,自引:0,他引:1       下载免费PDF全文
马晓菁  赵红卫  代斌  刘桂锋 《物理学报》2008,57(6):3429-3434
利用太赫兹时域光谱(terahertz time-domain spectroscopy,简称THz-TDS)技术研究了次黄嘌呤及其核苷在03—16THz波段的光谱特性.结果显示THz波对该碱基及核苷的结构变化有灵敏响应,其中次黄嘌呤在该波段无特征吸收,而其核苷在14THz处有强的指纹特征吸收峰,根据Hartree-Fock模拟计算提示该低频振动来源于嘌呤环与戊糖环的扭摆振动.定量研究的结果表明,在一定浓度范围内所测化合物THz吸收强度与浓度呈线性关系,符合朗伯-比尔定律.利用THz谱成分分析法对次黄嘌呤及其核苷的混合物进行了定量解析,获得了混合物中各成分的含量,相对误差不超过7%,并就误差产生的原因做了简要分析. 关键词: 太赫兹时域光谱 次黄嘌呤 次黄嘌呤核苷 定量分析  相似文献   

9.
王鹤  赵国忠 《光子学报》2014,39(7):1185-1188
利用太赫兹时域光谱技术测量了聚乙烯、聚丙烯、聚氯乙烯、聚四氟乙烯和丙烯腈-丁二烯-苯乙烯的太赫兹透射谱,研究其在0.2~2.6 THz频段的光谱特性,得到了在室温氮气环境下这些材料的太赫兹吸收谱和折射率色散特性.发现这五种塑料在太赫兹波段的折射率和吸收系数差异显著,折射率分别在1.35~1.85之间,聚乙烯、聚丙烯、聚四氟乙烯吸收很小,相比之下聚氯乙烯、丙烯腈-丁二烯-苯乙烯吸收很大,这为塑料种类的鉴别及高太赫兹透过率塑料衬底选择提供了依据.  相似文献   

10.
探索不同管径和长度的多壁碳纳米管(MWCNT)的太赫兹(THz)谱特性,采用透射型太赫兹时域光谱系统研究了5个不同管径和长度的MWCNT样品的太赫兹吸收谱和折射率谱,并对比和分析了它们的差异。结果表明:在0.2~2.0THz内,多壁碳纳米管太赫兹吸收没有特征吸收峰,吸收强度随着频率的增加而增加,并可以拟合为不同斜率的直线,且MWCNT在THz波段的吸收强度与管径和长度成正比。折射率随着频率的增加呈指数衰减,同时,管径是影响其折射率的一个重要因素,而长度对其影响不大。  相似文献   

11.
采用可调温太赫兹时域光谱(TDS-THz)系统,测量了脂肪族L-天冬酰胺、L-半胱氨酸、L-丙氨酸和芳香族L-酪氨酸四种氨基酸在低温下的温度特性,实验中,分别在降温和升温过程中选取了以下温度节点:常温,250,200,150,100,70,40,10以及4.5 K等,观察样品对太赫兹吸收光谱的异同;结合傅里叶变换红外光谱仪(FTIR)对室温下上述四种氨基酸在低频段(0.5~2 THz)范围内的吸收峰进行了验证,同时采用拉曼光谱仪测试了高频段(3~6 THz)范围内的这四种氨基酸在常温下的拉曼强度,以此来验证了实验的准确性。结果表明:脂肪族和芳香族氨基酸太赫兹光谱对温度变化的响应存在差异,随着温度降低,两类氨基酸的吸收峰位置均发生蓝移现象, 同时部分氨基酸出现新的吸收峰,但是吸收峰线宽的变化略有不同。最后,采用量子化学Gaussian 09软件包,分别选取一种脂肪族氨基酸和一种芳香族氨基酸,通过密度泛函理论对其单分子和晶胞结构进行了计算,对比测试结果可以得出两种氨基酸的振动模式是由分子间作用力形成的。  相似文献   

12.
太赫兹(THz)波是指频率在0.1~10 THz频段的电磁波。太赫兹光谱技术不同于以往的检测手段,可以用于检测氨基酸同分异构体,反映物质的分子结构和构型,对食品安全和药品药性控制有着重要的意义。亮氨酸与异亮氨酸属于同系的同分异构体,它们具有近似的分子结构,但物理化学性质有很大的差别。生物大分子的太赫兹吸收与其分子间氢键和分子内氢键的振动和转动能级相关的偶极跃迁有关,可以利用分子偶极跃迁进行生物分子的指纹识别。采用太赫兹时域光谱(THz-TDS)和傅里叶红外光谱(FTIR),对亮氨酸和异亮氨酸进行了测量。在中红外波段亮氨酸与异亮氨酸的吸收光谱几乎完全重叠,而在太赫兹频波段可以观察到它们的光谱存在明显差异,因此太赫兹光谱能够作为快速准确鉴别这两种物质的方法。采用密度泛函理论(DFT)对亮氨酸和异亮氨酸的低频集体振动模式进行理论模拟,并对其太赫兹光谱进行研究和讨论。通过比较实验和理论结果,计算得到的峰位与实验结果可以互相印证。  相似文献   

13.
对比于氨基酸的红外分析法,太赫兹波的电子能量更低,可实现无损检测。氨基酸分子内原子振动、分子间氢键的作用、以及晶体中晶格的低频振动均处于太赫兹波段,使其在太赫兹波段具有吸收峰,且不同的氨基酸分子太赫兹吸收峰不同,故可用氨基酸在太赫兹波段的这种“指纹特性”实现氨基酸类物质的定性分析。量子化学分析方法可以应用量子力学的基本原理和方法,研究稳定和不稳定分子的结构、性能及其之间的关系,还可以针对分子与分子间的相互作用、相互碰撞及相互反应等问题进行研究。通过量子化学计算方法计算氨基酸分子的太赫兹吸收谱,可以为氨基酸分子的太赫兹吸收峰匹配分子振动模式,对氨基酸定性分析有一定参考性与指向性,并为实验获取的样品太赫兹时域光谱提供理论支撑,在实验获得太赫兹吸收谱的基础上进行量子化学计算,还能为实验结果进行验证。首先利用太赫兹时域光谱技术获取了谷氨酰胺、苏氨酸、组氨酸的太赫兹吸收谱,分别构建这三种氨基酸样品在实物中以两性离子形式存在的单分子构型,利用量子化学计算方法在完成结构优化后进行太赫兹吸收谱模拟计算。计算结果表明三种氨基酸单分子的太赫兹吸收谱计算结果与实验获取的太赫兹吸收谱差异较大,但在高频段吸收峰峰位基本吻合。通过GaussView分别查看了这三种氨基酸分子在太赫兹段内的吸收峰对应频率处的振转情况,发现在高频段内三种氨基酸分子官能团均只发生转动而未见振动,并且转动模式基本一致。通过对氨基酸官能团的太赫兹吸收谱进行量子化学计算,将官能团在高频段内吸收峰对应频率处的振转模式与三种氨基酸分子在该段内吸收峰对应频率处的振转模式做了对比。研究表明,在氨基酸单分子构型下由量子化学方法计算所得的太赫兹吸收谱中,高频段内计算得出的模拟吸收峰与实验获取的太赫兹吸收峰基本吻合;振转模式分析发现,谷氨酰胺、苏氨酸、组氨酸在太赫兹高频段内的氨基酸官能团振转模式相同,三种氨基酸分子在高频段内的吸收峰主要来源于氨基酸官能团。因此,结合量子化学计算与太赫兹吸收谱可以实现氨基酸类物质的定性分析。  相似文献   

14.
分子的多形态(多晶型)是指化学组成相同但存在不止一种晶体形式的物质。这些多形态广泛存在于自然界中,其中药物的多形态尤其普遍。这些药物多形态虽然具有相同的化学分子组成,但其理化性质却存在差异,最终会导致药物作用功能的不同。近年来,随着太赫兹(THz)辐射源的产生方式成为一种常规技术后,太赫兹时域光谱技术(THz-TDS)的应用领域逐渐被拓宽。因为THz波不仅与分子内作用模式有关,更与氢键和范德华力等弱相互作用模式密切相关;THz辐射可以诱发低频键振动、晶体声子振动、氢键拉伸和扭转振动,许多有机分子的集体振动模式处于该波段,尤其是药物分子。基于此,采用THz-TDS技术,研究了马来酰肼药物分子两种多形态(MH2和MH3)在0.25~2.25 THz波段的THz吸收谱。通过实验测试,发现MH2和MH3的THz特征吸收峰完全不同,MH2获取到了三个特征吸收峰,分别位于0.34,1.41和1.76 THz;MH3晶型获取两个特征吸收峰,分别位于0.75和1.86 THz处;此结果表明马来酰肼多形态可以通过其THz特征吸收峰进行辨别表征。接着,为了对THz实验吸收峰进行解析,采用固态密度泛函理论(DFT)模拟了马来酰肼的红外吸收模式;在实验和理论频谱数据匹配的情况下,分析讨论了特征吸收峰的来源,发现MH2和MH3的THz吸收峰对其三维空间结构非常敏感,吸收峰均来源于分子间相互作用力。最后,为使药物研究能够与实际应用结合,对马来酰肼的商用药品青鲜素进行了THz光谱测试,通过其与马来酰肼多形态的THz吸收峰比较,发现人们日常使用的青鲜素是MH3晶型。此研究结果表明,THz-TDS技术是一种很有潜力的药物多形态检测工具,此研究有望解决马来酰肼多形态在工业生产及临床应用上检测难的问题。  相似文献   

15.
太赫兹是指频率从0.1到2.0 THz之间的远红外波。与傅里叶红外相比,太赫兹时域光谱能量低,信躁比高,并且无辐射损伤。氨基酸分子的低频振动模式(扭转,集体振动模式和氢键)处在 THz波段。氨基酸是一类重要的生物分子,是组成蛋白质最基本的物质。氨基酸分子以分子间氢键相互连接构成晶体。氨基酸在THz波段比在红外波段体现更多独特吸收特征。到目前为止,已经获得了20种氨基酸分子的太赫兹吸收谱,包括利用太赫兹技术对部分氨基酸的定量分析。氨基酸的太赫兹光谱研究,有利于深层次理解蛋白质/ DNA的低频振动模式及相关生物反应和活性。文章综述了20种氨基酸分子的太赫兹吸收光谱并建立了吸收光谱数据库。总结了太赫兹技术在氨基酸应用方面存在的问题,并对未来发展方向进行展望。  相似文献   

16.
本文对1,4-萘醌进行了太赫兹时域光谱,远红外吸收光谱及低频拉曼散射谱的测试研究。1,4-萘醌的太赫兹吸收光谱与远红外谱仪测得的光谱取得了在1.75 THz(58.3 cm-1)/1.63 THz(54.3 cm-1)等处吸收峰位基本相同、两者相互佐证和补充的结果。将太赫兹和远红外吸收谱与低频拉曼散射谱进行比较,表明两种选择机制不同的光谱在1.04,1.72和4.59 THz等处的峰位基本重合,结合群论的不可约表示理论分析,表明该样品在低频波段具有拉曼活性和红外活性的振动属性(A1、B1或B2)。采用Gaussi-an03软件的密度泛函理论B3LYP函数和6-311基组模拟单分子红外与拉曼光谱,结合实验分析,对部分分子基团或原子振转模式给与了指认。  相似文献   

17.
THz时域光谱在蛋白质研究中的应用进展   总被引:2,自引:0,他引:2  
太赫兹时域光谱 (THz-TDS)是基于飞秒超快激光技术的远红外波段光谱测量新技术,近年来在生命科学、医学制药、安全检测等不同研究领域中的应用进展迅速。文章结合THz-TDS技术的特点及其在生物分子光谱学研究中的物理基础,介绍了近年来利用THz-TDS技术研究氨基酸、肽和蛋白质的结构、构象、动力学及无标记检测等方面取得的成果和最新进展;总结了不同实验条件下测定的不同氨基酸、同种氨基酸异构体及肽在THz波段的吸收系数和折射率,并对不同实验室测定的结果进行了比较;阐述了THz-TDS技术研究干的、含水的蛋白质粉末以及蛋白质溶液的构象及动力学;介绍了THz-TDS技术在生物素-抗生物素蛋白无标记生物传感中的应用,并初步探讨了该技术在生物分子领域应用中有待解决的问题及发展前景。  相似文献   

18.
王卫宁  王果  张岩 《中国物理 B》2011,20(12):123301-123301
High-resolution terahertz absorption and Raman spectra of glutamine in the frequency region 0.2 THz-2.8 THz are obtained by using THz time domain spectroscopy and low-frequency Raman spectroscopy. Based on the experimental and the computational results, the vibration modes corresponding to the terahertz absorption and Raman scatting peaks are assigned and further verified by the theoretical calculations. Spectral investigation of the periodic structure of glutamine based on the sophisticated hybrid density functional B3LYP indicates that the vibrational modes come mainly from the inter-molecular hydrogen bond in this frequency region.  相似文献   

19.
许多生物分子自身的转动、振动或分子团的整体振动模式都位于太赫兹波段内,因此可以利用太赫兹光谱技术对生物分子进行检测。同时又由于太赫兹波的光子能量仅为毫电子伏量级,不会对分子的内部结构造成破坏,所以太赫兹时域光谱技术在生物检测方面具有良好的应用前景。众所周知,绝大多数的生物分子只有在液体条件下才能发挥其生物活性,所以研究液体环境下生物分子之间的相互作用就非常必要。然而水分子的转动模式、振动模式以及和氢键有关的能量均处于太赫兹波段,从而对其产生强烈的吸收;另外,水分子为极性分子,而极性分子对太赫兹波有强烈的共振吸收,这就使利用太赫兹技术对生物分子活性进行动态表征产生了困难。因此在研究溶液中的生物分子与太赫兹波的相互作用时,最大限度地减小水分子对太赫兹波的吸收就成为近年来的研究热点。目前,减少水对太赫兹波吸收的主要方法有:在溶液样品中加入抑制氢键缔合的离子来减小水对太赫兹的吸收;通过改变溶液的温度来调节水对太赫兹的吸收;利用微流控芯片技术,通过减小被测样品与太赫兹波的作用距离来减小水对太赫兹波的吸收。另外,激光的激励、电场或磁场的处理,也能改变水对太赫兹波的吸收,将盛有去离子水的微流控芯片放于电场中,研究经电场处理不同时间的去离子水对太赫兹吸收强度的影响。结果发现,太赫兹波的透射强度随着去离子水在电场当中静置时间的增加而增强,当在电场中静置60 min时,太赫兹的频谱强度达到最大,与空气的频谱强度接近。由此可以推断外加电场使水分子的偶极矩发生了变化,从而对整体水分子的振动和转动产生了影响,并且改变了水中的氢键结构,导致了太赫兹透射光谱强度的增强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号