首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
太赫兹是指频率从0.1到2.0 THz之间的远红外波。与傅里叶红外相比,太赫兹时域光谱能量低,信躁比高,并且无辐射损伤。氨基酸分子的低频振动模式(扭转,集体振动模式和氢键)处在 THz波段。氨基酸是一类重要的生物分子,是组成蛋白质最基本的物质。氨基酸分子以分子间氢键相互连接构成晶体。氨基酸在THz波段比在红外波段体现更多独特吸收特征。到目前为止,已经获得了20种氨基酸分子的太赫兹吸收谱,包括利用太赫兹技术对部分氨基酸的定量分析。氨基酸的太赫兹光谱研究,有利于深层次理解蛋白质/ DNA的低频振动模式及相关生物反应和活性。文章综述了20种氨基酸分子的太赫兹吸收光谱并建立了吸收光谱数据库。总结了太赫兹技术在氨基酸应用方面存在的问题,并对未来发展方向进行展望。  相似文献   

2.
采用太赫兹时域光谱(THz-TDS)和傅里叶变换红外光谱(FTIR),测量了L-抗坏血酸与硫胺素在0.10~3.50 THz的光谱特性。给出了两种维生素的分子模型,详细分析比较了抗坏血酸与硫胺素在两种方法测量下吸收光谱的异同。结果表明:利用太赫兹时域光谱和傅里叶红外光谱测得的特征吸收谱在0.70~3.00 THz完全吻合,而在较低频段0.30~0.50 THz,两种样品的傅里叶红外光谱展现了太赫兹时域光谱所没有的特征峰,同时硫胺素样品在8.00~12.00 THz范围内,8.75,8.85,9.00,9.30和10.30 THz出现指纹峰;研究了样品掺杂不同比例聚乙烯粉末时THz吸收光谱的差异,抗坏血酸对太赫兹吸收较弱,总结了两种维生素的折射率曲线与其吸收峰的对应关系;结果对抗坏血酸和硫胺素的分析识别以及维生素太赫兹光谱数据库的建立具有重要参考意义。  相似文献   

3.
一般来说,当粒子线度a与光波长λ可以比拟(a/λ数量级为0.1~10)甚至更大时,会产生米氏散射,导致无法有效检测高频波段太赫兹光谱的吸收峰以及会引起光谱重复性和信噪比的降低。本文分别用远红外傅里叶变换红外光谱仪(Far-infrared Fourier transform infrared spectrometer,Far-infrared FTIR,30~600cm-1)和太赫兹时域光谱仪(Terahertz time-domain spectrometer,THz-TDS,0.2–3.5THz),对4组不同颗粒尺寸的炙没药进行测试,得到的低频吸收峰位置基本相同。由于米氏散射影响,在385cm-1以后,无法有效检测吸收峰波形。通过计算协方差发现,随着药品颗粒尺寸减小,散射对于太赫兹吸收光谱影响越小,即光谱重复性越好,信噪比越高。  相似文献   

4.
王卫宁 《物理学报》2009,58(11):7640-7645
采用太赫兹时域光谱和拉曼光谱法对L-苏氨酸多晶粉末进行测试研究,获得了样品在0.2—2.8 THz(6.7—93.2 cm-1)波段的特征吸收和10—4000 cm-1波段的拉曼散射谱;分别在6.7—93.2 cm-1和400—4000 cm-1两个波段进行了吸收光谱与拉曼散射光谱的对比,根据晶胞分子所属的空间群,对隶属于分子的极性和非极性振动模式(A, B1, 关键词: 太赫兹光谱 拉曼散射 氨基酸  相似文献   

5.
使用FTIR,FT-Raman和太赫兹时域光谱(terahertz time-domain spectroscopy, THz-TDS)技术在室温下对氯磺丙脲的Ⅰ型与Ⅲ型进行分析与表征 。结果显示氯磺丙脲Ⅰ型与Ⅲ型在三种光谱中都表现出明显的差异。红外光谱与拉曼光谱中,Ⅰ型与Ⅲ型的光谱差异主要是吸收峰峰位的移动 和峰强的改变;此外,在拉曼光谱中Ⅲ型在100~1 800 cm-1的特征峰明显多于Ⅰ型;太赫兹光谱中,Ⅰ型在0.90, 1.09和1.29 THz处 有特征峰,而Ⅲ型在0.92, 1.11, 1.23和1.63 THz处有特征峰,尤其是1.63 THz处的一个强峰,明显区别于Ⅰ型。采用密度泛函理论(DFT)对氯磺 丙脲两种晶型进行分子模拟,模拟结果与实验光谱较好吻合,同时模拟结果也表明氯磺丙脲Ⅰ型与Ⅲ型在0.9 和1.1 THz处的多分子振动模式相 同,可以为氯磺丙脲其他晶型的太赫兹谱归属提供参考。该结果为药物多晶型的IR, Raman以及太赫兹光谱研究提供了依据。  相似文献   

6.
应用傅里叶红外光谱仪和激光拉曼光谱仪测试了RNA碱基在太赫兹波段(1~10 THz)的红外和拉曼光谱,同时结合Guassian09软件和周期性边界条件下基于能量的分块方法(PBC—GEBF),分析了RNA碱基晶体的红外和拉曼光谱特征,得到了所有特征峰位置及其对应的振动模式,且计算光谱与测试光谱一致吻合,表明碱基粉末样品为无定形晶体结构。通过对红外光谱的分析可知,在太赫兹波段,腺嘌呤和鸟嘌呤都有6个红外活性振动模式,胞嘧啶和尿嘧啶分别为6个和3个红外活性振动模式,与实验结果相比,除了鸟嘌呤6.35 THz处的弱吸收峰没能重现,4.83和5.39 THz处的吸收峰简并;胞嘧啶4.3和4.79 THz处吸收峰简并;尿嘧啶3.32和3.82 THz处的吸收峰简并外,其他吸收峰的位置和强度均被准确地模拟重现。通过对拉曼光谱的分析可知,理论和实验光谱基本一致,除了尿嘧啶3.52和4.48 THz处特征峰简并;鸟嘌呤7.26和8.03 THz,3.57,4.02,4.49,4.89和5.98 THz处特征峰简并外,其他特征峰的位置和强度均被准确的模拟重现。通过对特征峰的分析和辨认,可知在1~10 THz,RNA碱基的振动模式均来源于晶格内分子的集体振动,分子间的氢键和弱相互作用力对振动模式的贡献很大,进一步分析可知,在1~5.5 THz,其振动模式来自所有原子参与的集体振动,在5.5~10 THz,振动模式来自于部分原子参与的集体振动。此项研究对揭示RNA碱基在构成生物大分子结构、生物大分子鉴定以及太赫兹波段光谱的形成机制等方面,具有重要的理论和实际参考价值。  相似文献   

7.
有机磷农药甲基对硫磷的太赫兹(THz)光谱研究   总被引:1,自引:0,他引:1  
运用太赫兹时域光谱技术(THz-TDS)与理论模拟相结合的方法研究了有机磷农药甲基对硫磷在THz波段的光谱特性。在室温氮气环境中得到了样品在0.2~2.0 THz波段的吸收谱和折射率谱。表明其特征吸收峰分别位于0.65,1.33,1.81和1.91 THz处,其平均折射率为1.39。同时运用密度泛函理论(DFT)计算了甲基对硫磷分子的结构及其在太赫兹波段的振动频率,计算结果与实验数据吻合较好。研究结果表明,实验光谱的特征吸收峰是由分子的集体振动及扭转形成,不同的吸收峰位对应分子不同的振转模式。  相似文献   

8.
为深入了解β-D-吡喃半乳糖在太赫兹波段的光谱特性, 利用太赫兹时域光谱技术测量了室温下β-D-吡喃半乳糖晶体在0.3~3.0 THz范围内的吸收谱及折射率谱, 同时利用傅里叶变换红外光谱技术获得了半乳糖在1.5~19.5 THz之间的吸收谱。实验研究的同时, 运用密度泛函理论和6-311+G**基组计算了气态孤立β-D-吡喃半乳糖分子的结构及其在太赫兹波段的振动频率, 并据此对实验光谱吸收峰进行了指认。研究结果表明, 除了因为分子间效应而导致的少许偏移外, 理论计算结果与实验数据吻合得很好; 实验光谱在6 THz以上频段的共振吸收峰来源于明确的分子内振动模式, 而6 THz以下低频段的共振吸收峰则主要来源于分子间氢键或晶体的声子模式。实验和理论研究的对比表明物质的远红外吸收特征对于分子的结构和空间排列非常敏感。  相似文献   

9.
应用太赫兹时域光谱系统(THz-TDS)获取了两种互为异构体的糖类D-(+)-葡萄糖和D-(-)-果糖的太赫兹吸收谱,发现D-(+)-葡萄糖和D-(-)-果糖在0.3~1.72 THz频段内太赫兹吸收峰位存在明显区别,可以由1.41和1.66 THz两个吸收峰位鉴别D-(+)-葡萄糖和D-(-)-果糖。为研究D-(+)-葡萄糖太赫兹光谱吸收峰形成机理,首先构建了D-(+)-葡萄糖的单分子构型,采用密度泛函理论中的B3LYP泛函,利用Gaussian09完成对D-(+)-葡萄糖单分子构型的结构优化与频率计算。将量子化学计算结果与实验谱对比发现,基于D-(+)-葡萄糖单分子构型的量子化学计算结果与实验谱差异较大。然后构建了D-(+)-葡萄糖晶胞构型,采用广义梯度近似中的PBE泛函,利用CASTEP软件完成对D-(+)-葡萄糖晶胞构型的结构优化与频率计算。将量子化学计算结果与实验谱对比发现,基于D-(+)-葡萄糖晶胞构型的量子化学计算结果与实验谱较为吻合。D-(+)-葡萄糖晶胞构型量子化学计算时,因较为全面的考虑了分子间的氢键及范德华力的作用,说明D-(+)-葡萄糖在1.41 THz处吸收峰的形成为分子间弱相互作用。其次通过Materials Studio 2017软件指认了D-(+)-葡萄糖在1.41 THz吸收峰处的振转模式,发现D-(+)-葡萄糖在1.41 THz吸收峰主要是分子之间的相互作用,进一步说明D-(+)-葡萄糖在1.41 THz处的吸收峰主要是分子间的弱相互作用。在量子化学计算结果的基础上利用Multiwfn软件对D-(+)-葡萄糖晶胞进行RDG计算,利用VMD软件对D-(+)-葡萄糖晶胞中分子间的弱相互作用的类型、位置和强度进行可视化研究。研究结果表明,利用太赫兹时域光谱技术能够敏锐地感知糖类物质结构的细微变化,并能够正确鉴别其同分异构体。  相似文献   

10.
黄曲霉毒素的太赫兹检测研究   总被引:1,自引:0,他引:1  
为了探索能够快速简便、特异敏感的黄曲霉毒素检测方法,应用太赫兹时域光谱(THz-TDS)技术获得了黄曲霉毒素B1和M1在0.3~2.1 THz范围内的吸收光谱,实验结果显示它们在测量波段范围表现出不同的吸收位置和吸收强度,表明THz波对它们结构的变化有灵敏响应。黄曲霉毒素在THz波段的指纹谱的测定显示出太赫兹时域光谱技术作为一种新的光谱研究手段具有用于黄曲霉毒素结构和功能研究的潜力,并为此技术应用于食品中黄曲霉毒素的检测奠定了基础。  相似文献   

11.
王卫宁  王果  张岩 《中国物理 B》2011,20(12):123301-123301
High-resolution terahertz absorption and Raman spectra of glutamine in the frequency region 0.2 THz-2.8 THz are obtained by using THz time domain spectroscopy and low-frequency Raman spectroscopy. Based on the experimental and the computational results, the vibration modes corresponding to the terahertz absorption and Raman scatting peaks are assigned and further verified by the theoretical calculations. Spectral investigation of the periodic structure of glutamine based on the sophisticated hybrid density functional B3LYP indicates that the vibrational modes come mainly from the inter-molecular hydrogen bond in this frequency region.  相似文献   

12.
国际珠宝交易市场上最近出现了一批价值不菲的无色透明的宝石级钠沸石刻面成品,为提供快速区分其与仿制品材料的依据,文章通过红外光谱和拉曼光谱对三颗钠沸石样品的振动光谱进行了研究。结果表明, 其红外光谱主要表现为:4 000~1 200 cm-1的吸收峰是结构中水导致的吸收;1 200~600 cm-1 的强吸收与TO4四面体的内部T—O(T为Si或Al)的反对称和对称伸缩振动有关。拉曼光谱散射峰主要分布在300~600和700~1 200 cm-1两个区间。300~360 cm-1处较弱强度的拉曼散射峰是由于结构中水分子所导致。482 cm-1处中等强度的峰归属于硅氧四面体内部由于变形导致的拉曼位移。726 cm-1处的拉曼散射峰归属于Al—O的伸缩振动;974,1 038,1 084 cm-1的三处拉曼散射峰都是Si—O的伸缩振动导致的拉曼位移。  相似文献   

13.
采用傅里叶远红外光谱仪(FTIR),在室温条件下测量了多种饱和直链有机小分子的太赫兹光谱。测试结果显示,有机官能团的差异导致有机物的太赫兹光谱特征显著不同。其中,有机物的晶格振动吸收峰和分子间氢键的振动吸收峰分别位于太赫兹高频和低频波段。而且,饱和直链一元醇的—OH官能团产生的分子间氢键的特征峰位于57 cm-1,而三十烷酸的—COOH官能团产生的分子间氢键的特征峰则位于74 cm-1。分子间氢键使三十烷醇和三十烷酸对太赫兹辐射的吸收能力明显地强于三十烷烃。相比于三十烷醇,三十烷酸的太赫兹特征峰还发生有规律的红移和蓝移现象。此外,还采用密度泛函理论B3LYP/6-311G(d, p)基组对饱和直链烷烃、烷醇和烷酸的太赫兹光谱进行了仿真计算,发现分子间氢键作用越强的有机物的单体分子的仿真结果与实测光谱的吻合程度越低。二聚体结构的仿真结果与实测光谱的吻合程度明显地高于单分子结构。研究结果对利用FTIR研究其他有机官能团的太赫兹光谱特征、探索有机分子内部的振动模式、探究有机物太赫兹响应的物理原理及器件应用等具有重要意义。  相似文献   

14.
自新冠肺炎(COVID-19)疫情爆发以来,国内外多家研究机构和企业都在加快推进新冠病毒(SARS-CoV-2)抗体药物的研发。药物多晶型限制了有效药物的研发进度。药物生产、存储和使用环境影响了药物的稳定性。红外光谱作为一种快速无损检测手段,可从振动光谱反映出药物结构、晶型甚至生产工艺上的差异大大提高了研发效率。首次以三种临床试验被认为治疗新冠肺炎有效药物:磷酸氯喹,利巴韦林和盐酸阿比多尔为例,利用傅里叶红外光谱仪测试得到它们在远红外(1~10 THz)和中红外(400~4 000 cm-1)波段的振动光谱。远红外光谱中,利巴韦林的特征峰位于:2.01,2.68,3.37,4.05,4.83,5.45,5.92,6.42和7.14 THz附近;磷酸氯喹的特征峰位于:1.26,1.87,2.37,3.06,3.78,5.09和6.06 THz附近;盐酸阿比多尔的特征峰位于:2.24,3.14,3.72,4.25和5.38 THz附近。结合密度函理论,选择B3LYP杂化泛函和6-311++G(d,p)基组,利用Crystal14和Gaussian16软件分析了光谱中所有特征峰对应的振动模式,实现了对振动光谱的精确指认。远红外波段,振动模式源自分子的集体振动。中红外波段,2 800 cm-1以下,振动模式主要源自基团的面内外弯曲和摇摆;2 800 cm-1以上,振动模式过渡为C—H,O—H和N—H键的面内伸缩。以考虑了周期性边界条件的晶体结构作为理论计算的初始构型,会让理论光谱与实验光谱更加吻合,尤其是在远红外波段和中红外400~1 000 cm-1的低频段。该研究对深入理解磷酸氯喹,利巴韦林和盐酸阿比多尔等抗病毒药物的药学特性,药物间相互作用,控制药物生产过程,指导药物存储和使用有重大意义。  相似文献   

15.
选取了在化工、医药生产中常见的中间体——二甲基苯甲酸作为研究对象,利用太赫兹时域光谱(THz-TDS)系统研究了室温条件下,二甲基苯甲酸的六种同分异构体在太赫兹波段的吸收光谱。实验结果表明,在0.2~2.2 THz波段范围内,六种物质的特征频谱响应有非常明显的区别,而红外光谱仪的测量结果则显示,在1 450~1 700 cm-1波段范围内不同的异构体表现出相似的吸收特征。利用密度泛函理论(DFT)对六种物质的吸收频谱进行计算,并对它们的吸收峰产生的原因进行分析,可知在1 450~1 700 cm-1范围内六种物质的吸收峰均是由苯环的骨架伸缩振动和羧基上CO的伸缩振动引起的,而在0.2~2.2 THz波段,由于六种物质分子中整个苯环与相对位置不同的三个支链之间存在面外相对摆动,造成了集体振动模式的差异,从而表现出不同的吸收特征。通过分析发现,六种样品在两个频率范围分别表现出的差异和相似的吸收特征,源于其分子结构间的差异性和相似性,而利用太赫兹波段吸收特征的差异,可以实现对二甲基苯甲酸六种同分异构体的鉴别。上述研究结果表明,利用太赫兹和红外光谱技术研究同分异构体光谱特性的差异性和相似性是可行的,也为快速鉴别二甲基苯甲酸异构体种类和检测该化工中间体的纯度提供了一条有效的途径。  相似文献   

16.
采用可调温太赫兹时域光谱(TDS-THz)系统,测量了脂肪族L-天冬酰胺、L-半胱氨酸、L-丙氨酸和芳香族L-酪氨酸四种氨基酸在低温下的温度特性,实验中,分别在降温和升温过程中选取了以下温度节点:常温,250,200,150,100,70,40,10以及4.5 K等,观察样品对太赫兹吸收光谱的异同;结合傅里叶变换红外光谱仪(FTIR)对室温下上述四种氨基酸在低频段(0.5~2 THz)范围内的吸收峰进行了验证,同时采用拉曼光谱仪测试了高频段(3~6 THz)范围内的这四种氨基酸在常温下的拉曼强度,以此来验证了实验的准确性。结果表明:脂肪族和芳香族氨基酸太赫兹光谱对温度变化的响应存在差异,随着温度降低,两类氨基酸的吸收峰位置均发生蓝移现象, 同时部分氨基酸出现新的吸收峰,但是吸收峰线宽的变化略有不同。最后,采用量子化学Gaussian 09软件包,分别选取一种脂肪族氨基酸和一种芳香族氨基酸,通过密度泛函理论对其单分子和晶胞结构进行了计算,对比测试结果可以得出两种氨基酸的振动模式是由分子间作用力形成的。  相似文献   

17.
用衰减全反射傅里叶光谱仪(FTIR-ATR)在室温条件下测试了甲醇、乙醇、丙醇、异丙醇、丁醇及异丁醇六种饱和一元醇在30~300 cm-1波段的远红外透射光谱。通过分析这六种具有类似化学结构的一元醇的远红外透射光谱,发现它们在30~150 cm-1波段均有明显的吸收峰,但在150~300 cm-1波段吸收峰不明显; 羟基在一元醇中的质量百分比越高,相关一元醇的远红外光谱的平均透过率越低; 直链一元醇的光谱平均透过率高于支链状的同分异构体。采用密度泛函理论B3LYP/6-311G(d,p)基组对甲醇单体和多聚体进行结构优化和频率计算。计算显示,在30~150 cm-1波段甲醇单体分子没有出现吸收峰,但是甲醇的多聚体则出现明显的吸收峰,计算得到的多聚体吸收峰位置与实际测量的结果相符合。结果表明,甲醇在太赫兹波段吸收的来自于不同形式聚合体的集体振动,甲醇溶液以甲醇三聚体为主要的存在形式。本成果不仅为研究有机分子在太赫兹波段的频率响应提供了新的实验方法,而且对进一步利用FTIR-ATR研究其他有机分子具有借鉴意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号