首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The influence of co/counter dual-twisted tapes (CoT/CT) on heat transfer rate in a circular tube has been investigated experimentally. In the experiment, the dual-twisted tapes are placed at the entry of the test tube in two arrangements: (1) each of dual twisted tape was twisted in the same direction that can produce co-swirl flow at the entry and (2) each of dual twisted tape was twisted in the opposite direction that can produce counter-swirl flow. Dual tapes were twisted in three different twist ratios (y/w = 3, 4, and 5) for generating different swirl intensities at the entry of the test section while the single twisted tape (ST) was also the test for comparison. The aim at using the dual twisted tapes is to create co/counter-rotating swirl flows having a significant influence on the flow turbulence intensity at the entry section leading to higher heat transfer enhancement. Average Nusselt numbers of CoT/CT are determined and also compared with those obtained from other similar cases, i.e., ST. The experimental results on the heat transfer rates indicated that the tubes with the dual twisted tapes (CoT/CT) are higher than those with the single tape at the entry section (x/D = 0 to 10). The heat transfer rates at longer distance became lower due to high interaction of each swirl. In addition, the mean Nusselt number and friction factor for the swirl generator created by the CT is nearly similar to CoT results.  相似文献   

2.
This article reports an experimental investigation on the heat transfer, friction factor, and thermal enhancement factor of a tube equipped with vertical wing-cut twisted tapes, horizontal wing-cut twisted tapes, and plain twisted tapes with twist ratios of y = 2.0, 4.4, and 6.0. The obtained results reveal that the heat transfer rate, friction factor, and thermal enhancement factor in the tube equipped with horizontal wing-cut twisted tapes are significantly higher than those in the tube fitted with vertical wing-cut twisted tapes, plain twisted tapes, and a plain tube. An empirical correlation is subsequently derived from the experimental results.  相似文献   

3.
This article presents an investigation on heat transfer enhancement in a round tube inserted with a helically twisted tape. The effects of a helically twisted tape with alternate axis (HTT-A) on heat transfer, friction factor, and thermal performance factor behaviours are reported for the turbulent regime. HTT-A geometries are tape pitch to tube diameter, P/D = 1.0, 1.5, and 2.0; alternate length to pitch length, l/P = 1.0, 1.5, and 2.0; twisted length to tape width, y/W = 3.0; and tape width to tube diameter, w/D = 0.2. The experiment has been performed by varying the volumetric air flow rate in order to adjust Reynolds number ranging from 6 000 to 20 000. The wall of the testing tube is uniformly heated as a constant heat flux while the tests are covered with thermal insulations to reduce heat loss to surroundings. Thermal performance is evaluated by comparing the present experimental results with the results of the modified HTT-A and also those obtained from previous study (conventional helically twisted tape, HTT). The thermal performance of tested tube with HTT-A is evaluated to obtain the degree of heat transfer enhancement and friction factor induced by HTT-A with respect to the plain tube under the same test conditions. Evenly, it is interesting to observe that the tube with HTT-A consistently possesses higher heat transfer and thermal performance factor than those with the HTT around 14.1% and 1.9%, respectively. The HTT-A with the smaller pitch ratio and adjacent twist length provides higher heat transfer rate and friction factor than the one with larger pitch ratio and alternate length as a result of a larger contact surface area, stronger swirl intensity and, thus, better fluid mixing near the tube wall. In the range determined, the tubes with the largest pitch ratio (P/D = 2.0) and smallest alternate length (l/P = 1.0) give the highest thermal performance factor at around 1.35. In addition, the empirical correlations of the Nusselt number, friction factor, and thermal performance factor are also described.  相似文献   

4.
This paper studies the experimental evaluation of TiO2 nanofluids in enhancing the heat transfer rate and friction factor on a micro-finned tube fitted with twisted tape inserts. Results show that the enhancement in heat transfer and pumping power completely depends on the concentration ratio of nanoparticles, pitch ratio and the type of pitch. Comparisons were made with the previous study with different operating parameters such as twist ratio and twist type. Viscosity of nanofluid increases with an increase in the concentration, which leads to increased pressure drop and pumping power. For the Reynolds number (Re = 4000), the maximum performance ratio was found as 2.1, 2, for concentration of 0.1 and 0.05, respectively. The addition of microfin arrangement inside the circular tube enhanced the performance ratio with minimum concentration of TiO2 nanofluid.  相似文献   

5.
For the most common AC application frequencies, the main component of the AC losses in multifilamentary Bi(2223) tapes are caused by hysteresis- and coupling losses. These losses can be reduced enhancing the matrix resistivity and applying a twist to the filaments. We report on the AC loss properties of 37-filament tapes with AgAu (8 wt.%) matrix, and novel 19-filament tapes with SrCO3 barriers between the filaments. We performed transport AC loss and magnetic AC loss measurements in parallel and perpendicular magnetic fields. Both kinds of tapes were also prepared with filament twists below a twist pitch of 20 mm. The influence of the different tape modifications on the AC loss behaviour is presented and compared with theoretical models to understand the effect of the resistive matrix. In the case of magnetic AC loss measurements, reduced AC losses due to decoupled filaments were observed for the twisted tapes with a resistive matrix in low parallel fields.  相似文献   

6.
Wurui Ta 《Physics letters. A》2018,382(35):2395-2402
In recent years, several cabling methods of high temperature superconducting (HTS) cable have been proposed; e.g., the conductor on a round core cable (CORC), the Roebel assembled coated conductor cable, the helical twisted stacking-tape cable (TSTC) and the twisted-stack slotted core HTS cable (TSSC). These cabling methods allow the high temperature superconducting tapes widely used in the high-field magnets. The single superconducting tape performance under applied loads directly relates to the transport performance of the cable and the choice of the cabling method. In this paper, we investigate the effect of twisting morphology on the electro-mechanical properties of HTS tapes. Particular attention is given to the transverse Lorentz force of a pre-twisted HTS tape. The analytical solution of the deflection of the HTS tape under transverse Lorentz force is derived. Then, the current distribution and AC loss of the tape are calculated by using H-formulation. The effects of twist angle and loading conditions are examined for different HTS tape lengths. The results show that the stiffness resistance ability to Lorentz force of the HTS tape can be increased in several ranges by increasing the twist angle. The twisting structure can also reduce current degradation and AC loss, and thus enhance the transport capacity of HTS tape. This study helps understand the electro-mechanical properties of pre-twisted HTS tapes and provides theoretical reference for the design of novel HTS cable structures.  相似文献   

7.
非均匀加热条件下内插扭带管强化传热模拟分析   总被引:2,自引:0,他引:2  
以水为工作介质,采用欧拉多相流模型和非平衡沸腾模型,当流速在0.3~0.7m·s-1范围内、工作压力为4.5MPa、热流密度为2MW·m-2时,数值模拟了内插扭带管和光管管内流动过冷沸腾传热。对比了两种管道的换热系数、气泡份额、流动速度、流场流线、固体组件温度和压降,分析了内插扭带管的综合性能。结果表明,与光管相比较,内插扭带管的换热系数提高约6%~90%,压降增大约200%~250%,得到流速在0.4~0.6m·s-1范围内时内插扭带管的综合性能评价因子η为1.1~1.3。  相似文献   

8.
This article communicates the thermal performance, heat transfer rate, and friction factor of Al2O3/DI water nanofluids at different concentrations in a micro-finned tube with tube helical inserts for different twist ratios. The thermal performance, heat transfer coefficient, and friction of the present study is also compared with a plain tube for validation. From the study, it is identified that the micro-finned tube with tube insert performance is higher as compared with a plain tube. Similarly, an empirical relation for Nusselt number (Nu) and friction factor (f) is estimated for straight twisted tube and left-right combination. The deviation between experimental and theoretical values for left-right twist and straight twist is found as 3 and 7% for Nusselt number and 7 and 9% for friction factor, respectively. Similarly, while analyzing the thermal performance, it was found that the maximum performance achieved was with a micro-fin tube with left-right twist with nanofluid concentration of 0.2%.  相似文献   

9.
Experimental studies on friction factor and heat transfer characteristics for the laminar flow of ethylene glycol in a square duct fitted with twisted tapes of different twist ratios under nearly uniform wall temperature conditions are reported in this article. The Nusselt numbers were found to be 5.44–7.49 and 2.46–4.87 times that of plain square duct forced convection values based on constant flow rate and constant pumping power criteria, respectively, for y = 2.66. The augmented friction factor and Nusselt number for a square duct is about 1.9 and 2.10 times higher than that for an augmented circular tube.  相似文献   

10.
ABSTRACT

Present study investigates the heat transfer and friction characteristics of heat exchanger tube fitted with perforated twisted tape (PTT) insert having V cuts. A copper tube of 1 m length and 0.032 m inner diameter is used as test section to collect the experimental data by varying the twist ratio of PTT from 2 to 6 for the Reynolds number range of 2,700–23,400. V cuts are introduced in the PTT and the V-cut relative pitch ratio is varied from 1 to 2. The maximum thermo-hydraulic performance parameter is found to be 1.58.  相似文献   

11.
This study reports the comparison of heat transfer and friction factor characteristics of helical screw inserts in Al2O3–water and carbon nano-tube–water nano-fluids through a straight pipe in transition regime with constant heat flux boundary condition. Experiments were carried out by using 0.15% volume concentration of Al2O3–water and carbon nano-tube–water nano-fluid with helical tape inserts of twist ratio, TR = 1.5, 2.5, and 3. The thermal performance of helical screw tape inserts with the carbon nano-tube–water nano-fluid is found -to be higher when compared to the Al2O3–water nano-fluid. In addition, the maximum enhancement in heat transfer was obtained for the carbon nano-tube–water nano-fluid with helical tape inserts of twist ratio 1.5. The increase in pressure drop of the Al2O3–water nano-fluid with helical screw tape inserts is found to be higher compared to the carbon nano-tube–water nano-fluid helical screw tape inserts at lower value of twist ratio.  相似文献   

12.
The water/graphene oxide nanofluid effect in a pipe equipped by twisted tape inserts under air cross-flow is investigated and the optimal tape geometry is determined. The range of internal and external Reynolds numbers are: 3800<Reo<21500 and 550<Rei<2000. Heat transfer and pressure drop increase by increasing Re and inserts width and heat transfer performance coefficient increased up to 1.4, indicating enhanced heat transfer compared to undesirable pressure drop. On the other hand, the heat transfer coefficient is 26% higher when compared with water in a plain tube. According to the results, this method is a good alternative in heat exchangers.  相似文献   

13.
三维内肋管内插入螺旋扭带的强化传热实验   总被引:4,自引:0,他引:4  
本文分别以水和乙二醇为工质,在Re数范围为:600~40000,Pr数范围为:5.5~110之间,对四根分别插入三种不同扭率螺旋扭带的三维内助管内的换热和流阻特性进行了实验研究。结果表明:三维内肋管内加装扭带的强化传热技术适用于低Re数下高Pr数工质的管内对流换热强化。根据实验值得到了流阻和换热关联式。  相似文献   

14.
Hysteresis losses and coupling losses, a main component of the AC losses in Bi(2223) tapes, can effectively be reduced by enhancing the resistivity of the matrix material between the filaments and applying a filament twist. Since through alloying the sheath, as using AgAu(8 wt.%), the resistivity can only be raised by a factor <10 (77 K), a new conductor configuration with a quite novel composite matrix having resistive SrCO3 barriers inside the Ag matrix between the filaments was developed. These new barriers, a cheap and commercial material, withstand the tape annealing, do not react with the superconductor, sinter dense and have a good bonding to Ag. Applying two different preparation techniques for 19 filament prototype tapes, critical current densities up to 20.7 kA cm−2 were achieved. We report on tape preparation, the effect on the phase texture and the superconducting properties of such barrier tapes.  相似文献   

15.
In this paper, we fabricated Bi2223 tapes with interfilamentary oxide barriers and evaluated interfilamentary coupling properties under an AC perpendicular magnetic field at 77 K. To avoid the side effect on Bi2223 phase formation during sintering process, SrZrO3 was selected for barrier materials. Moreover, 20 wt.% Bi2212 was mixed with SrZrO3 to improve its ductility for cold working. Monocore Ag-sheathed rods were coated by the oxide barriers with slurry before stacking with a honeycomb structure. By twisting the filament with twist pitch length below 10 mm and introducing interfilamentary barriers, the coupling frequency (fc) under an AC perpendicular field, which is inversely proportional to the decay time constant (τc) of coupling current, exceeded 100 Hz. At perpendicular field amplitude above full-penetration field, the magnetization losses of the twisted barrier tape were reduced by 30–40% around power-grid frequency, compared with analytical values for fully-coupled filaments. However, the loss values were still considerably higher than the prediction of the hysteresis loss (Qh) for the completely decoupled filaments. From the frequency dependence of losses, it was suggested that the loss reduction of twisted barrier tape around power-grid frequency were limited by not only the contribution of coupling current loss (Qc) but also the insufficient Qh reduction due to the presence of physical connection among the filaments positioned near the center of a tape section.  相似文献   

16.
Seeking a geometry that can withstand greater transverse loads based on the electromechanical material properties of high-temperature superconducting (HTS) tape is an effective way of improving the transport performance of HTS cables. The cabling method requires the determination of the optimum twist angle of the HTS tape for withstanding transverse loads. This paper investigates the critical current characteristics of HTS tapes under combined deformation. The limit range of the twist angle under the combined deformation is measured and the optimum twist angle of the HTS tape is determined. The results show that the twisting chirality configuration obviously affects the bending strength of the HTS tape. In the elastic range, increasing the pre-twist angle increases the bending strength of the HTS tape, thereby improving the transport performance. In addition, a numerical model is built to further investigate the effect of the twisting chirality configuration on the electromechanical properties of the HTS tape, and the experimental results are explained. The experimental and simulation results generally agree well, and calculations show that there is always a sharp change in stress at the interface of different materials. These findings explain the mechanism of the effect of the twisting chirality configuration on the mechanical behavior and critical current of the HTS tape. They also provide a reference for cabling methodologies for the HTS cable configuration.  相似文献   

17.
The CFD simulation of heat transfer characteristics of a nanofluid in a circular tube fitted with helical twist inserts under constant heat flux has been explained using Fluent version 6.3.26 in laminar flow. Al2O3 nanoparticles in water of 0.5%, 1.0% and 1.5% concentrations and helical twist inserts of twist ratios 2.93, 3.91 and 4.89 has been used for the simulation. All thermophysical properties of nanofluids are temperature dependent. The heat transfer enhancement increases with Reynolds number and decreases with twist ratio with maximum for the twist ratio 2.93. By comparing the heat transfer rates of water and nanofluids, the increase in Nusselt number is 5%–31% for different helical inserts and different volume concentrations. The maximum heat transfer enhancement is 31.29% for helical insert of twist ratio 2.93 and for the volume concentration of 1.5% corresponding to the Reynolds number of 2039. The data obtained by simulation match with the literature value of water with the discrepancy of less than ±10% for plain tube and tube fitted with helical tape inserts for Nusselt number.  相似文献   

18.
With the help of a tensor method, an analytical nonparaxial propagation formula for a twisted anisotropic Gaussian Schell-model (GSM) beam in free space is derived based on the generalized Raleigh-Sommerfeld diffraction integral. The far-field nonparaxial propagation expression for a twisted anisotropic GSM beam is also derived. The paraxial approximation is dealt with as a special case of our general result. Our numerical results show that the nonparaxial propagation properties of a twisted anisotropic GSM beam are closely related to the initial beam parameters (i.e., twist factor, transverse spot width matrix, coherence width matrix and wavelength) and the propagation distance. Our formulae provide a convenient and powerful way for studying the paraxial and nonparaxial propagation of an isotropic or anisotropic GSM beam with or without twist phase in free space.  相似文献   

19.
通过有限元软件对由20层高温超导带材所制成的超导叠带在覆铝时的温度分布进行模拟,模拟结果表明在覆铝过程中两侧带材均会经历420°C以上的高温.对几种高温超导带材在不同温度和持续时间下,对其ReBCO侧、哈氏合金侧和双侧分别加热进行高温实验,测试得出了各带材临界电流的退化情况.实验结果表明,高温对带材造成了性能退化,不同...  相似文献   

20.
In AC power-engineering applications, a large part of the AC loss in the superconductor is due to magnetization by the external field. This magnetic AC loss has been well described for the low-Tc conductors. In Bi-2223 tapes the picture is different due to strong anisotropy, granularity and flux creep. Magnetic AC loss in various twisted and non-twisted Bi-2223 tapes has been measured at power frequencies by a pickup method. The results are compared to theoretical models of magnetization loss. When the field is parallel to the tape plane, the filaments in twisted tapes can be decoupled and the AC loss is decreased even when the matrix is pure silver. The extra effect of higher-resistance matrix materials is studied. In perpendicular field it is more difficult to decouple the filaments, due to the particular tape geometry. Contrary to a wire, there are essential differences between the AC loss mechanisms in a long twisted tape and those in a short piece of non-twisted tape. Finally, the dynamic resistance caused by the AC magnetic field is examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号