首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 487 毫秒
1.
The nonlocal symmetry for the potential Kadomtsev-Petviashvili(pKP)equation is derived by the truncated Painleve analysis.The nonlocal symmetry is localized to the Lie point symmetry by introducing the auxiliary dependent variable.Thanks to localization process,the finite symmetry transformations related with the nonlocal symmetry are obtained by solving the prolonged systems.The inelastic interactions among the multiple-front waves of the pKP equation are generated from the finite symmetry transformations.Based on the consistent tanh expansion method,a nonauto-B(a|¨)cklund transformation(BT)theorem of the pKP equation is constructed.We can get many new types of interaction solutions because of the existence of an arbitrary function in the nonauto-BT theorem.Some special interaction solutions are investigated both in analytical and graphical ways.  相似文献   

2.
From a two-vortex interaction model in atmospheric and oceanic systems, a nonlocal counterpart with shifted parity and delayed time reversal is derived by a simple AB reduction. To obtain some approximate analytic solutions of this nonlocal system, the multi-scale expansion method is applied to get an AB-Burgers system. Various exact solutions of the AB-Burgers equation, including elliptic periodic waves, kink waves and solitary waves, are obtained and shown graphically.To show the applications of these solutions in describing correlated events, a simple approximate solution for the two-vortex interaction model is given to show two correlated dipole blocking events at two different places. Furthermore, symmetry reduction solutions of the nonlocal AB-Burgers equation are also given by using the standard Lie symmetry method.  相似文献   

3.
A consistent tanh expansion (CTE) method is used to study the modified Boussinesq equation. It is proved that the modified Boussinesq equation is CTE solvable. The soliton-cnoidal periodic wave is explicitly given by a nonanto-BT theorem. Furthermore, the nonlocal symmetry for the modified Boussinesq equation is obtained by the Painlevé analysis. The nonlocal symmetry is localized to the Lie point symmetry by introducing one auxiliary dependent variable. The finite symmetry transformation related with the nonlocal symemtry is obtained by solving the initial value problem of the prolonged systems. Thanks to the localization process, many interaction solutions among solitons and other complicated waves are computed through similarity reductions. Some special concrete soliton-cnoidal wave interaction behaviors are studied both in analytical and graphical ways.  相似文献   

4.
阮航宇  陈一新 《中国物理》1999,8(4):241-251
The Painlevé property, infinitely many symmetries and exact solutions of a (2+1)-dimensional nonlinear Schr?dinger equation, which are obtained from the constraints of the Kadomtsev-Petviashvili equation, are studied in this paper. The Painlevé property is proved by the Weiss-Kruskal approach, the infinitely many symmetries are obtained by the formal series symmetry method and the dromion-like solution which is localized exponentially in all directions is obtained by a variable separation method.  相似文献   

5.
In this paper, nonlocal residual symmetry of a generalized (2+1)-dimensional Korteweg–de Vries equation is derived with the aid of truncated Painlevé expansion. Three kinds of non-auto and auto Bäcklund transformations are established. The nonlocal symmetry is localized to a Lie point symmetry of a prolonged system by introducing auxiliary dependent variables. The linear superposed multiple residual symmetries are presented, which give rise to the nth Bäcklund transformation. The consistent Riccati expansion method is employed to derive a Bäcklund transformation. Furthermore, the soliton solutions, fusion-type N-solitary wave solutions and soliton–cnoidal wave solutions are gained through Bäcklund transformations.  相似文献   

6.
辛祥鹏  苗倩  陈勇 《中国物理 B》2014,23(1):10203-010203
The nonlocal symmetry of the mKdV equation is obtained from the known Lax pair; it is successfully localized to Lie point symmetries in the enlarged space by introducing suitable auxiliary dependent variables. For the closed prolongation of the nonlocal symmetry, the details of the construction for a one-dimensional optimal system are presented. Furthermore, using the associated vector fields of the obtained symmetry, we give the reductions by the one-dimensional sub-algebras and the explicit analytic interaction solutions between cnoidal waves and kink solitary waves, which provide a way to study the interactions among these types of ocean waves. For some of the interesting solutions, the figures are given to show their properties.  相似文献   

7.
Jian-Wen Wu 《中国物理 B》2022,31(3):30201-030201
With the aid of the Painlevé analysis, we obtain residual symmetries for a new (3+1)-dimensional generalized Kadomtsev—Petviashvili (gKP) equation. The residual symmetry is localized and the finite transformation is proposed by introducing suitable auxiliary variables. In addition, the interaction solutions of the (3+1)-dimensional gKP equation are constructed via the consistent Riccati expansion method. Particularly, some analytical soliton-cnoidal interaction solutions are discussed in graphical way.  相似文献   

8.
The nonlocal symmetry is derived for an equation combining the modified Calogero–Bogoyavlenskii–Schiff equation with its negative-order form from the truncated Painlevéexpansion method. The nonlocal symmetries are localized to the Lie point symmetry by introducing new auxiliary dependent variables. The finite symmetry transformation and the Lie point symmetry for the prolonged system are solved directly. Many new interaction solutions among soliton and other types of interaction solutions for the modified Calogero–Bogoyavlenskii–Schiff equation with its negative-order form can be obtained from the consistent condition of the consistent tanh expansion method by selecting the proper arbitrary constants.  相似文献   

9.
The symmetry of the fermionic field is obtained by means of the Lax pair of the mKdV equation. A new super mKdV equation is constructed by virtue of the symmetry of the fermionic form. The super mKdV system is changed to a system of coupled bosonic equations with the bosonization approach. The bosonized SmKdV(BSmKdV)equation admits Painlevé property by the standard singularity analysis. The traveling wave solutions of the BSmKdV system are presented by the mapping and deformation method. We also provide other ideas to construct new super integrable systems.  相似文献   

10.
STUDY OF A (2+1)-DIMENSIONAL BROER-KAUP EQUATION   总被引:3,自引:0,他引:3       下载免费PDF全文
阮航宇  陈一新 《中国物理》1998,7(4):241-248
The Painlevé property and infinitely many symmetries of a (2+1)-dimensional Broer-Kaup equation which is obtained from the constraints of the KP equation are studied in this paper. The Painlevé property is proved by the Weiss-Kruskal approach, the infinitely many symmetries are obtained by the formal series symmetry method.  相似文献   

11.
A generalized Kadomtsev-Petviashvili equation is studied by nonlocal symmetry method and consistent Riccati expansion (CRE) method in this paper. Applying the truncated Painlevé analysis to the generalized Kadomtsev-Petviashvili equation, some Bäcklund transformations (BTs) including auto-BT and non-auto-BT are obtained. The auto-BT leads to a nonlocal symmetry which corresponds to the residual of the truncated Painlevé expansion. Then the nonlocal symmetry is localized to the corresponding nonlocal group by introducing two new variables. Further, by applying the Lie point symmetry method to the prolonged system, a new type of finite symmetry transformation is derived. In addition, the generalized Kadomtsev-Petviashvili equation is proved consistent Riccati expansion (CRE) solvable. As a result, the soliton-cnoidal wave interaction solutions of the equation are explicitly given, which are difficult to be found by other traditional methods. Moreover, figures are given out to show the properties of the explicit analytic interaction solutions.  相似文献   

12.
《Physics letters. A》2020,384(27):126729
The integrability nature of a nonparaxial nonlinear Schrödinger (NNLS) equation, describing the propagation of ultra-broad nonparaxial beams in a planar optical waveguide, is studied by employing the Painlevé singularity structure analysis. Our study shows that the NNLS equation fails to satisfy the Painlevé test. Nevertheless, we construct one bright solitary wave solution for the NNLS equation by using the Hirota's direct method. Also, we numerically demonstrate the stable propagation of the obtained bright solitary waves even in the presence of an external perturbation in a form of white noise. We then numerically investigate the coherent interaction dynamics of two and three bright solitary waves. Our study reveals interesting energy switching among the colliding solitary waves due to the nonparaxiality.  相似文献   

13.
Ping Liu 《中国物理 B》2021,30(8):80203-080203
We study a forced variable-coefficient extended Korteweg-de Vries (KdV) equation in fluid dynamics with respect to internal solitary wave. Bäcklund transformations of the forced variable-coefficient extended KdV equation are demonstrated with the help of truncated Painlevé expansion. When the variable coefficients are time-periodic, the wave function evolves periodically over time. Symmetry calculation shows that the forced variable-coefficient extended KdV equation is invariant under the Galilean transformations and the scaling transformations. One-parameter group transformations and one-parameter subgroup invariant solutions are presented. Cnoidal wave solutions and solitary wave solutions of the forced variable-coefficient extended KdV equation are obtained by means of function expansion method. The consistent Riccati expansion (CRE) solvability of the forced variable-coefficient extended KdV equation is proved by means of CRE. Interaction phenomenon between cnoidal waves and solitary waves can be observed. Besides, the interaction waveform changes with the parameters. When the variable parameters are functions of time, the interaction waveform will be not regular and smooth.  相似文献   

14.
There has been considerable interest in the study on the variable-coefficient nonlinear evolution equations in recent years, since they can describe the real situations in many fields of physical and engineering sciences. In this paper, a generalized variable-coefficient KdV (GvcKdV) equation with the external-force and perturbed/dissipative terms is investigated, which can describe the various real situations, including large-amplitude internal waves, blood vessels, Bose-Einstein condensates, rods and positons. The Painlevé analysis leads to the explicit constraint on the variable coefficients for such a equation to pass the Painlevé test. An auto-B?cklund transformation is provided by use of the truncated Painlevé expansion and symbolic computation. Via the given auto-B?cklund transformation, three families of analytic solutions are obtained, including the solitonic and periodic solutions.  相似文献   

15.
ABSTRACT

A coupled Alice–Bob modified Korteweg de-Vries (mKdV) system is established from the mKdV equation in this paper, which is nonlocal and suitable to model two-place entangled events. The Lax integrability of the coupled Alice–Bob mKdV system is proved by demonstrating three types of Lax pairs. By means of the truncated Painlevé expansion, auto-Bäcklund transformation of the coupled Alice–Bob mKdV system and Bäcklund transformation between the coupled Alice–Bob mKdV system and the Schwarzian mKdV equation are demonstrated. Nonlocal residual symmetries of the coupled Alice–Bob mKdV system are researched. To obtain localized Lie point symmetries of residual symmetries, the coupled Alice–Bob mKdV system is extended to a system consisting six equations. Calculation on the prolonged system shows that it is invariant under the scaling transformations, space-time translations, phase translations and Galilean translations. One-parameter group transformation and one-parameter subgroup invariant solutions are obtained. The consistent Riccati expansion (CRE) solvability of the coupled Alice–Bob mKdV system is proved and some interaction structures between soliton–cnoidal waves are obtained by CRE. Moreover, Jacobi periodic wave solutions, solitary wave solutions and singular solutions are obtained by elliptic function expansion and exponential function expansion.  相似文献   

16.
Symmetry reduction method is one of the best ways to find exact solutions. In this paper, we study the possibility of symmetry reductions of the well known Burgers equation including the nonlocal symmetry. The related new group invariant solutions are obtained. Especially, the interactions among solitons, Airy waves, and Kummer waves are explicitly given.  相似文献   

17.
Symmetry reduction method is one of the best ways to find exact solutions. In this paper, we study the possibility of symmetry reductions of the well known Burgers equation including the nonlocal symmetry. The related new group invariant solutions are obtained. Especially, the interactions among solitons, Airy waves, and Kummer waves are explicitly given.  相似文献   

18.
Abstract

The Painlevé-test has been applied to checking the integrability of nonlinear PDEs, since similarity solutions of many soliton equations satisfy the Painlevé equation. As is well known, such similarity solutions can be obtained by the infinitesimal transformation, that is, the classical similarity analysis, and also the dimension of the PDEs can be reduced.

In this paper, the KdV, the mKdV, and the nonlinear Schrödinger equations are considered and are transformed into equations with loss and/or nonuniformity by transformations constructed on a basis of the local similarity variables. The transformations include the Bäcklund and the Galilei invariant ones. It should be noticed that the approach is applicable to other PDEs and for nonlocal similarity variables.  相似文献   

19.
GUI MU  ZHENGDE DAI  ZHANHUI ZHAO 《Pramana》2013,81(3):367-376
It is shown that Painlevé integrability of (2+1)-dimensional Boiti–Leon–Pempinelli equation is easy to be verified using the standard Weiss–Tabor–Carnevale (WTC) approach after introducing the Kruskal’s simplification. Furthermore, by employing a singular manifold method based on Painlevé truncation, variable separation solutions are obtained explicitly in terms of two arbitrary functions. The two arbitrary functions provide us a way to study some interesting localized structures. The choice of rational functions leads to the rogue wave structure of Boiti–Leon–Pempinelli equation. In addition, for the other choices, it is observed that two solitons may evolve into breather after interaction. Also, the interaction between two kink compactons is investigated.  相似文献   

20.
The connection between the complex sine-Gordon equation on the plane associated with a Weierstrass-type system and the possibility of constructing several classes of multivortex solutions is discussed in detail. It is shown that the amplitudes of these vortex solutions represented in polar coordinates satisfy the fifth Painlevé equation. We perform the analysis using the known relations for the Painlevé equations and construct explicit formulas in terms of the Umemura polynomials, which are τ functions for rational solutions to the third Painlevé equation. New classes of multivortex solutions to the Weierstrass system are obtained through the use of this proposed procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号