首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The transport properties of epitaxial graphene formed on the surface of a metal substrate have been considered within the approach based on the model Anderson-Newns Hamiltonian. An analytical expression for the density of states of epitaxial graphene has been obtained and the renormalization of the Fermi velocity in doped epitaxial graphene has been investigated. The real part of the dynamic conductance of epitaxial graphene has been examined and the limiting values of conductance have been analyzed. When there is no interaction between the graphene and the substrate, the static conductance of epitaxial graphene takes on the universal value 2e 22 ?. The fundamental problems considered in this study are of crucial importance in the study of optical, magneto-optical, thermoelectric, and thermomagnetic properties of epitaxial graphene. The obtained results are of great interest for practical use of epitaxial graphene as a promising material for microwave technology.  相似文献   

2.
In this report we investigate structural and electrical properties of epitaxial Chemical Vapor Deposition quasi-free-standing graphene on an unintentionally-doped homoepitaxial layer grown on a conducting 4H–SiC substrate 4° off-axis from the basal [0001] direction towards [11-20]. Due to high density of SiC vicinal surfaces the deposited graphene is densely stepped and gains unique characteristics. Its morphology is studied with atomic force and scanning electron microscopy. Its few-layer character and p-type conductance are deduced from a Raman map and its layers structure determined from a high-resolution X-ray diffraction pattern. Transport properties of the graphene are estimated through Hall effect measurements between 100 and 350 K. The results reveal an unusually low sheet resistance below 100 Ω/sq and high hole concentration of the order of 1015 cm−2. We find that the material's electrical properties resemble those of an epitaxially-grown SiC PIN diode, making it an attractive platform for the semiconductor devices technology.  相似文献   

3.
李佳  王丽  冯志红  蔚翠  刘庆彬  敦少博  蔡树军 《中国物理 B》2012,21(9):97304-097304
Graphene with different surface morphologies were fabricated on 8° -off-axis and on-axis 4H-SiC(0001) substrates by high-temperature thermal decompositions. Graphene grown on Si-terminated 8° -off-axis 4H-SiC(0001) shows lower Hall mobility than the counterpart of on-axis SiC substrates. The terrace width is not responsible for the different electron mobility of graphene grown on different substrates, as the terrace width is much larger than the mean free path of the electrons. The electron mobility of graphene remains unchanged with an increasing terrace width on Siterminated on-axis SiC. Interface scattering and short-range scattering are the main factors affecting the mobility of epitaxial graphene. After the optimization of the growth process, the Hall mobility of the graphene reaches 1770 cm 2 /V·s at a carrier density of 9.8.×10 12 cm 2 . Wafer-size graphene was successfully achieved with an excellent double-layer thickness uniformity of 89.7% on a 3-inch SiC substrate.  相似文献   

4.
Various physical properties of epitaxial graphene grown on SiC(0001) are studied. First, the electronic transport in epitaxial bilayer graphene on SiC(0001) and quasi-free-standing bilayer graphene on SiC(0001) is investigated. The dependences of the resistance and the polarity of the Hall resistance at zero gate voltage on the top-gate voltage show that the carrier types are electron and hole, respectively. The mobility evaluated at various carrier densities indicates that the quasi-free-standing bilayer graphene shows higher mobility than the epitaxial bilayer graphene when they are compared at the same carrier density. The difference in mobility is thought to come from the domain size of the graphene sheet formed. To clarify a guiding principle for controlling graphene quality, the mechanism of epitaxial graphene growth is also studied theoretically. It is found that a new graphene sheet grows from the interface between the old graphene sheets and the SiC substrate. Further studies on the energetics reveal the importance of the role of the step on the SiC surface. A first-principles calculation unequivocally shows that the C prefers to release from the step edge and to aggregate as graphene nuclei along the step edge rather than be left on the terrace. It is also shown that the edges of the existing graphene more preferentially absorb the isolated C atoms. For some annealing conditions, experiments can also provide graphene islands on SiC(0001) surfaces. The atomic structures are studied theoretically together with their growth mechanism. The proposed embedded island structures actually act as a graphene island electronically, and those with zigzag edges have a magnetoelectric effect. Finally, the thermoelectric properties of graphene are theoretically examined. The results indicate that reducing the carrier scattering suppresses the thermoelectric power and enhances the thermoelectric figure of merit. The fine control of the Fermi energy position is thought to be key for the practical use of graphene as a thermoelectric material, which could be achieved with epitaxial graphene. All of these results reveal that epitaxial graphene is physically interesting.  相似文献   

5.
Si面4H-SiC衬底上外延石墨烯近平衡态制备   总被引:1,自引:0,他引:1       下载免费PDF全文
蔚翠  李佳  刘庆彬  蔡树军  冯志红 《物理学报》2014,63(3):38102-038102
SiC热解法是制备大面积、高质量石墨烯的理想选择之一.外延石墨烯的晶体质量仍是制约其应用的关键因素之一.本文通过SiC热解法在4H-SiC(0001)衬底上制备单层外延石墨烯.通过引入氩气惰性气氛和硅蒸气,使SiC衬底表面的Si原子升华与返回概率接近平衡,外延石墨烯生长速率大大减慢,单层石墨烯的生长时间从15 min延长至75 min.测试分析表明,生长速率减慢,外延石墨烯中缺陷减少,晶体质量提高,使得外延石墨烯的电性能都得到改善,单层外延石墨烯的最高载流子迁移率达到1200 cm2/V·s,方阻604?/.以上结果表明,控制生长气氛,减慢生长速率是实现高质量外延石墨烯的可行途径之一.  相似文献   

6.
Basic electronic properties of two-dimensional electron gas (2DEG) formed at GaN/AlGaN hetero-interface in large-scale (100 mm) wafer made by metal organic chemical vapour deposition (MOCVD) have been reported and discussed. From conventional Hall measurements, highest electron mobility was found to be μe∼1680 and 9000 cm2/V s at room temperature and at ∼5 K, respectively, for sheet electron density of ns∼8×1012 cm−2. In magneto-resistance (MR) measurements carried out at 1.5 K in Hall bar sample defined by photolithography and ion implantation, very clear Schubnikov de-Haas oscillations and integer quantum Hall effect were observed in diagonal (Rxx) and off-diagonal (Rxy) resistances, respectively. In addition, a good insulating nature of GaN layer is confirmed by capacitance-voltage (C-V) measurement. These results suggest the high-qualitiness of our 100 mm GaN/AlGaN high electron mobility transistor (HEMT) wafers comparable to those so far reported.  相似文献   

7.
The two dimensional charge carriers in monolayer and bilayer graphene are described by massless and massive chiral Dirac Hamiltonians, respectively. These two-dimensional materials are predicted to exhibit a wide range of behavior, etc. However, graphene devices on a typical three-dimensional insulating substrates such as SiO2 are highly disordered, exhibiting characteristics that are far inferior to the expected intrinsic properties of graphene. We have developed a novel technique for substrate engineering of graphene devices using layered dielectric materials to build graphene based vertical heterostructures. We employ hBN, an insulating isomorph of graphite, as a substrate and gate dielectric for graphene electronics. In this review, we describe the fabrication and characterization of high-quality exfoliated mono- and bilayer graphene devices on single-crystal hBN substrates, using a mechanical transfer process. Graphene devices on hBN substrates have mobilities and carrier inhomogeneities that are almost an order of magnitude better than devices on SiO2. We use the enhanced mobility of electrons in hBN supported graphene to investigate the effects of electronic interactions. We find that interactions drive spontaneous breaking of the emergent SU(4) symmetry of the graphene Landau levels, leading to a variety of non-trivial integer and fractional quantum Hall states. The ability to assemble crystalline layered materials in a controlled way permits the fabrication of graphene devices on other promising dielectrics and allows for the realization of more complex graphene heterostructures.  相似文献   

8.
In this work, the pulsed electron beam deposition method (PED) is evaluated by studying the properties of ZnO thin films grown on c-cut sapphire substrates. The film composition, structure and surface morphology were investigated by means of Rutherford backscattering spectrometry, X-ray diffraction and atomic force microscopy. Optical absorption, resistivity and Hall effect measurements were performed in order to obtain the optical and electronic properties of the ZnO films. By a fine tuning of the deposition conditions, smooth, dense, stoichiometric and textured hexagonal ZnO films were epitaxially grown on (0001) sapphire at 700 °C with a 30° rotation of the ZnO basal plane with respect to the sapphire substrate. The average transmittance of the films reaches 90% in the visible range with an optical band gap of 3.28 eV. Electrical characterization reveals a high density of charge carrier of 3.4 × 1019 cm?3 along with a mobility of 11.53 cm²/Vs. The electrical and optical properties are discussed and compared to ZnO thin films prepared by the similar and most well-known pulsed laser deposition method.  相似文献   

9.
The effect of a nanosecond volume discharge forming in an inhomogeneous electrical field at atmospheric pressure on the CdHgTe (MCT) epitaxial films of the p-type conduction with the hole concentration 2·1016 cm3 and mobility 500 cm2·V–1·s–1 is studied. The measurement of the electrophysical parameters of the MCT specimens upon irradiation shows that a layer exhibiting the n-type conduction is formed in the near-surface region of the epitaxial films. After 600 pulses and more, the thickness and the parameters of the layer are such that the measured field dependence of the Hall coefficient corresponds to the material of the n-type conduction. Analysis of the preliminary results reveals that the foregoing nanosecond volume discharge in the air at atmospheric pressure is promising for modification of electro-physical MCT properties.  相似文献   

10.
Hot carrier cooling in few-layer and multilayer epitaxial graphene on SiC, and chemical vapor deposition (CVD) grown graphene transferred onto a glass substrate was investigated by transient absorption spectroscopy and imaging. Coupling to the substrate was found to play a critical role in charge carrier cooling. For both multilayer epitaxial graphene and monolayer CVD graphene, charge carriers transfer heat predominantly to intrinsic in-plane optical phonons of graphene. At high pump intensity, a significant number of optical phonons are accumulated, and the optical phonon lifetime presents a bottleneck for charge carrier cooling. This hot phonon effect did not occur in few-layer epitaxial graphene because of strong coupling to the substrate, which provided additional cooling channels. The limiting charge carrier lifetimes at high excitation densities were 1.8 ± 0.1 ps and 1.4 ± 0.1 ps for multilayer epitaxial graphene and monolayer CVD graphene, respectively. These values represent lower limits on the optical phonon lifetime for the graphene samples.  相似文献   

11.
Hall effect measurements of a graphene-on-SiC system were carried out as a function of temperature (1.8–200 K) at a static magnetic field (0.5 T). With the analysis of temperature dependent single-field Hall data with the Simple Parallel Conduction Extraction Method (SPCEM), bulk and two-dimensional (2D) carrier densities and mobilities were extracted successfully. Bulk carrier is attributed to SiC substrate and 2D carrier is attributed to the graphene layer. For each SPCEM extracted carrier data, relevant three-dimensional or 2D scattering analyses were performed. Each SPCEM extracted carrier data were explained with the related scattering analyses. A temperature independent mobility component, which may related to an interaction between graphene and SiC, was observed for both scattering analyses with the same mobility limiting value. With the SPCEM, effective ionized impurity concentration of SiC substrate, extracted 2D-mobility, and sheet carrier density of the graphene layer are calculated with using temperature dependent static magnetic field Hall data.  相似文献   

12.
The epitaxial growth of graphene by the sublimation of Si-terminated silicon carbide (SiC) is studied inside a graphite enclosure in a radio-frequency furnace by comparing different in situ processes involving hydrogen etching or not and different growth conditions. For the growth under vacuum, even with the surface preparation of hydrogen etching, the morphology of the synthesized graphene is found full of voids and defects in the form of a multilayer graphene film. For the growth under Ar, the hydrogen etching plays a vital role to improve the graphene quality in terms of surface roughness, the number of graphene layers and the domain size. For the graphene samples grown with the proposed protocol, the original combination of micro-probe Raman spectroscopy and simultaneous optical transmission and reflection measurements reveals a detailed spatially resolved image of the graphene domains with monolayer domain size of ~5×5 µm2 on about 2/3 of the total sample surface. The magnetotransport data yield charge-carrier mobilities up to 2900 cm2/Vs as found for high quality graphene on the Si-face of SiC. The observed magnetoquantum oscillations in the magnetoresistance confirm the expected behavior of single-layer graphene.  相似文献   

13.
In this article the performance of photodiodes made from epitaxially grown layers of p-InSb on n-type InSb substrates is reported. The effect of increasing Cd atomic weight percent on p-type carrier concentration and mobility at 77 K is also discussed. In our epitaxial growth method, a ramp cooling technique was used. Finally by improving growth parameters such as growth temperature, prior cleaning of B face (Sb) n-InSb substrates and cooling rate, adequate epitaxial layers of p-InSb on n-InSb <1 1 1> and consequently highly sensitive photodiodes have been obtained.A high detectivity photodiodes fabricated for p-InSb on n-InSb substrate by liquid phase epitaxy (LPE) was measured using optoelectronic tests and the detectivity of the diodes was compared with n-InSb on p-InSb. Several other tests such as Hall effect, thickness measurements, IV and X-ray diffraction (XRD) were also performed and morphology images will be presented in this paper.  相似文献   

14.
We have investigated transport characteristics of epitaxial graphene grown on semi-insulating silicon-face 4H-silicon carbide (SiC) substrate by thermal decomposition method in relatively high N2 pressure atmosphere. We have succeeded in forming 1–2 layers of graphene on SiC in controlled manner. The surface morphology of formed graphene was analyzed by atomic force microscopy (AFM), low-energy electron diffraction (LEED) and low-energy electron microscope (LEEM). We have confirmed single-layer graphene growth in average by this method. Top-gated, single-layer graphene field-effect transistors (FETs) were fabricated on epitaxial graphene grown on 4H-SiC. Increased on/off ratio of nearly 100 at low temperature and extremely small minimum conductance (0.018–0.3 in 4 e2/h) in gated Hall-bar samples suggest possible band-gap opening of single-layer epitaxial graphene grown on Si-face SiC.  相似文献   

15.
The conductivity and the Hall effect of pure CoO and of CoO doped with titanium or chromium have been measured. The measurements were done over a wide range of oxygen pressures and the range of temperatures was 988–1280°C. The Hall effect changes sign from p to n type near the phase boundary Co/CoO and the dopants move the point of changeover to higher oxygen pressure. We found that the Hall mobility of the electrons is between 0·36–0·6 cm2/V-sec with a tendency to rise with rising temperature. The Hall mobility of the holes is 0·06 cm2/V-sec, in agreement with previous work.  相似文献   

16.
The effects of biaxial stress in ZnO:Ga thin films on different substrates, e.g., sapphire(0001), quartz, Si(001), and glass have been investigated by X-ray diffraction, atomic force microscopy, and electrical transport and ellipsometric measurements. A strong dependence of orientation, crystallite size, transport, and electronic properties upon the substrate-induced stress has been found. The structural properties indicate that a tensile stress exists in epitaxial ZnO:Ga films grown on sapphire, Si, and quartz, while a compressive stress appears in films grown on glass. The resistivity of the films decreased with increasing biaxial stress, which is inversely proportional to the product of the carrier concentration and Hall mobility. The refractive index n was found to decrease with increasing biaxial stress, while the optical band gap E0 increased with stress. These behaviors are attributed to lattice contraction and the increase in the carrier concentration that is induced by the stress. Our experimental data suggest that the mechanism of substrate-induced stress is important for understanding the properties of ZnO:Ga thin films and for the fabrication of devices which use these materials.  相似文献   

17.
Photodiodes of InSb were fabricated on an epitaxial layer grown using molecular beam epitaxy (MBE). Thermal cleaning of the InSb (0 0 1) substrate surface, 2° towards the (1 1 1) B plane, was performed to remove the oxide. Photodiode properties of МВЕ-formed epitaxial InSb were demonstrated. Zero-bias resistance area product (R0A) measurements were taken at 80 K under room temperature background for a pixel size of 100 μm × 100 μm. Values were as high as 4.36 × 104 Ω/cm2, and the average value of R0A was 1.66 × 104 Ω/cm2. The peak response was 2.44 (A/W). The epitaxial InSb photodiodes were fabricated using the same process as bulk crystal InSb diodes with the exception of the junction formation method. These values are comparable to the properties of bulk crystal InSb photodiodes.  相似文献   

18.
The geometry of hexafluorotribenzo[a,g,m]coronene with n-carbon alkyl chains [FTBC-Cn (n = 4, 6, 8, 12)] and their supramolecule self-assembly on a highly oriented pyrolytic graphite (HOPG) surface has been optimized by molecular dynamics simulations using COMPASS force field at 0 K, 298 K, 333 K and 353 K. Electronic properties and intermolecular interactions in graphene supramolecule assembly have been studied by the first principle methods based on the density functional theory (DFT). It is indicated that the thermal stability and electronic properties of graphene molecules can be tunable by attaching alkyl chains to a triangular graphene sheet, and changing the length of the alkyl chain, and self-assembling on a certain substrate. The main results are as follows. The geometry and energy gap of the FTBC-Cn single molecule and their supramolecule self-assembly on HOPG are both stable with the changes of the temperature from 0 K to 353 K and the number of carbon atoms on the alkyl chain. The simulation results of geometry, energy gap as well as STM images of graphene supramolecule assembly are in good agreement with the corresponding experimental results in room temperature. Furthermore, the electronic properties of graphene supramolecule assembly at the temperatures of 0 K, 333 K and 353 K are also predicted. When a triangular graphene molecule attached with six alkyl chains, the energy gaps are increased and stabilized at the temperature from 0 K to 353 K. After FTBC-Cn molecule self-assembly on a HOPG substrate, the energy gap is reduced but still stable.  相似文献   

19.
Abstract

The electronic transport properties of Dirac fermions in chemical vapour-deposited single-layer epitaxial graphene on anSiO2/Si substrate have been investigated using the Shubnikov–de Haas (SdH) oscillations technique. The magnetoresistance measurements were performed in the temperature range between 1.8 and 43 K and at magnetic fields up to 11 T. The 2D carrier density and the Fermi energy have been determined from the period of the SdH oscillations. In addition, the in-plane effective mass as well as the quantum lifetime of 2D carriers have been calculated from the temperature and magnetic field dependences of the SdH oscillation amplitude. The sheet carrier density (1.42 × 1013 cm?2 at 1.8 K), obtained from the low-field Hall Effect measurements, is larger than that of 2D carrier density (8.13 × 1012 cm?2). On the other hand, the magnetoresistance includes strong magnetic field dependent positive, non-oscillatory background magnetoresistance. The strong magnetic field dependence of the magnetoresistance and the differences between sheet carrier and 2D carrier density can be attributed to the 3D carriers between the graphene sheet and the SiO2/Si substrate.  相似文献   

20.
Epitaxial graphene is synthesized by silicon sublimation from the Si-terminated 6H–SiC substrate. The effects of graphitization temperature on the thickness and surface morphology of epitaxial graphene are investigated. X-ray photoelectron spectroscopy spectra and atomic force microscopy images reveal that the epitaxial graphene thickness increases and the epitaxial graphene roughness decreases with the increase in graphitization temperature. This means that the thickness and roughness of epitaxial graphene films can be modulated by varying the graphitization temperature. In addition, the electrical properties of epitaxial graphene film are also investigated by Hall effect measurement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号