首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Characteristics of ZnO-Cu-ZnO multilayer films on copper layer properties   总被引:1,自引:0,他引:1  
ZnO/Cu/ZnO multilayers on glass with different copper layer thickness were prepared by simultaneous RF magnetron sputtering of ZnO and dc magnetron sputtering of Cu. Different optimization procedure were used for good transparent conductive film. Several analytical tools such as spectrophotometer, scanning electron microscope (SEM), four point probes were used to explore the causes of the changes in electrical and optical properties. The sheet resistance of the structure was severely influenced by the deposition condition of both top ZnO and intermediate Cu layer. Effect of substrate temperature and annealing treatment on ZnO and Cu layer was analyzed. A sheet resistance of 10 Ω/sq and transmittance over 85% at 580 nm wavelength was achieved and could be reproduced by controlling the preparation process parameter. The results of an optimization condition of both oxide layers and metallic Cu layers are illustrated.  相似文献   

2.
Nanometer scale Al/AlN multilayers have been prepared by dc magnetron sputtering technique with a columnar target. A set of Al/AlN multilayers with the Al layer thickness of 2.9 nm and the AlN layer thickness variation from 1.13 to 6.81 nm were determined. Low angle X-ray diffraction (LAXRD) was used to analyze the layered structure of multilayers. The phase structure of the coatings was investigated with grazing angle XRD (GAXRD). Mechanical properties of these multilayers were thoroughly studied using a nanoindentation and ball-on-disk micro-tribometer. It was found that the multilayer hardness and reduced modulus showed no strong dependence on the AlN layer thickness. Al2.9 nm/AlN1.13 nm multilayer had more excellent tribological properties than single layers and other proportion multilayers with a lowest friction coefficient of 0.15. And the tribological properties of all the multilayers are superior to the AlN single layer.  相似文献   

3.
Transparent conductive ZnO/Ag/ZnO multilayer electrodes having much lower electrical resistance than the widely used transparent electrodes were prepared by simultaneous RF magnetron sputtering of ZnO and DC magnetron sputtering of Ag. An Ag film with different thickness was used as intermediate metallic layers. The optimum thickness of Ag thin films was determined to be 6 nm for high optical transmittance and good electrical conductivity. With about 20-25 nm thick ZnO films, the multilayer showed high optical transmittance in the visible range of the spectrum and had color neutrality. The electrical and optical properties of the multilayers were changed mainly by Ag film properties. A high quality transparent electrode, having sheet resistance as low as 3 ohm/sq and high transmittance of 90% at 580 nm, was obtained and could be reproduced by controlling the preparation parameter properly. The above property is suitable as transparent electrode for dye sensitized solar cells (DSSC).  相似文献   

4.
Two groups of transparent conductive ZnO/Ag/ZnO, ZAZ, multilayer coatings were successively deposited by direct current (DC) magnetron sputtering. Sputtering was carried out from zinc (Zn) and silver (Ag) metallic targets. The effects of Ag layer thickness and ZnO top layer thickness on the properties of the ZAZ multilayer system were examined using different analytical methods. The influences of the Ag layer thickness and ZnO top layer thickness on structural properties were studied using X-ray diffraction. The thicknesses of ZAZ multilayer system were determined using X-ray reflectometry. A sheet resistance of 2.3 Ω/sq at an Ag layer thickness of 17.7 nm was obtained. The sheet resistance changes slightly with ZnO top layer thickness. The optical properties of the films were analyzed. Both Ag layer thickness and ZnO top layer thickness affect transmittance. The optical constants of the ZAZ multilayer system were calculated from transmittance and reflectance measurements. The figure of merit was applied on the ZAZ coatings and the most suitable films for the application as transparent conductive electrodes were determined.  相似文献   

5.
Cu-based Al-doped ZnO multilayer films were deposited on glass substrates by DC magnetron sputtering at room temperature. Three kinds of multilayer structures (AZO/Cu, AZO/Cu/AZO, and Cu/AZO) were designed for comparison, and the effects of the Cu layer thickness on photoelectrical properties of the multilayer films were investigated. The results revealed that the transparent-conductive property and near-infrared reflectance of the films are closely correlated with the Cu layer thickness, and among the three structures, AZO/Cu bi-layer films exhibited preferable photoelectrical properties. The AZO/Cu bi-layer film with a Cu layer thickness of 7 nm displayed the highest figure of merit of 4.82 × 10−3 Ω−1, with a low sheet resistance of 21.7 Ω/sq and an acceptable visible transmittance of 80%. The near infrared reflectance above 50% can be simultaneously obtained. The good performance of the coatings indicates that they are promising for coated glasses, thin film solar cells and heat-reflectors.  相似文献   

6.
J.Y. Lee 《Optics Communications》2009,282(12):2362-3085
Sn doped In2O3 (ITO) single layer and a sandwich structure of ITO/metal/ITO (IMI) multilayer films were deposited on a polycarbonate substrate using radio-frequency and direct-current magnetron sputtering process without substrate heating. The intermediated metal films in the IMI structure were Au and Cu films and the thickness of each layer in the IMI films was kept constant at 50 nm/10 nm/40 nm. In this study, the ITO/Au/ITO films show the lowest resistivity of 5.6 × 10−5 Ω cm.However the films show the lower optical transmission of 71% at 550 nm than that (81%) of as deposited ITO films. The ITO/Cu/ITO films show an optical transmittance of 54% and electrical resistivity of 1.5 × 10−4 Ω cm. Only the ITO/Au/ITO films showed the diffraction peaks in the XRD pattern. The figure of merit indicated that the ITO/Au/ITO films performed better in a transparent conducting electrode than in ITO single layer films and ITO/Cu/ITO films.  相似文献   

7.
TiN/SiC nanomultilayers with various constituent layer thicknesses were prepared by magnetron sputtering using TiN and SiC ceramic targets. X-ray diffractometer, scanning electron microscope, energy dispersive spectrometer, high-resolution transmission electron microscope, atomic force microscope and nanoindenter were employed to study the growth, microstructure and mechanical properties of these films. Experimental results revealed that amorphous SiC, which is more favorable under normal sputtering conditions, was forced to crystallize and grew epitaxially with TiN layers at thicknesses of less than 0.8 nm. The resultant films were found to form strong columnar structures, accompanied with a remarkable hardness increment. Maximal nanoindentation hardness as high as 60.6 GPa was achieved when SiC thickness was ∼0.6 nm. A further increase of SiC thickness caused the formation of amorphous SiC, which blocked the epitaxial growth of the multilayers, resulting in the decline of film's hardness. Additionally, investigations on multilayers different in TiN layer thicknesses showed that they are insensitive in both microstructure and hardness to the fluctuation of TiN layer thickness. The formation of epitaxially grown structure between crystalline SiC and TiN layers was found to be responsible for the obtained superhardness in multilayers.  相似文献   

8.
In this study, the ZnO/Ag-Ti structure for transparence conducting oxide (TCO) is investigated by optimizing the thickness of the Ag-Ti alloy and ZnO layers. The Ag-Ti thin film is deposited by DC magnetron sputtering and its thicknesses is well controlled. The ZnO thin film is prepared by sol-gel method using zinc acetate as cation source, 2-methoxiethanol as solvent and monoethanolamine as solution stabilizer. The ZnO film deposition is performed by spin-coating technique and dried at 150 °C on Corning 1737 glass. Due to the conductivity of ZnO/Ag-Ti is dominated by Ag-Ti, the sheet resistance of ZnO/Ag-Ti decrease dramatically as the thickness of Ag-Ti layer increases. However, the transmittances of ZnO/Ag-Ti become unacceptable for TCO application after the thickness of Ag-Ti layer beyond 6 nm. The as-deposited ZnO/Ag-Ti structure has the optical transmittance of 83% @ 500 nm and the low resistivity of 1.2 × 10−5 Ω-cm. Furthermore, for improving the optical and electrical properties of ZnO/Ag-Ti, the thermal treatment using laser is adopted. Experimental results indicate that the transmittance of ZnO/Ag-Ti is improved from 83% to 89% @ 500 nm with resistivity of 1.02 × 10−5 Ω-cm after laser drilling. The optical spectrum, the resistance, and the morphology of the ZnO/Ag-Ti will be reported in the study.  相似文献   

9.
ZnO thin films with thikness d = 100 nm were deposited onto different substrates such as glass, kapton, and silicon by radio frequency magnetron sputtering. The structural analyses of the films indicate they are polycrystalline and have a wurtzite (hexagonal) structure.The ZnO layer deposited on kapton substrate shows a stronger orientation of the crystallites with (0 0 2) plane parallel to the substrate surface, as compared with the other two samples of ZnO deposited on glass and silicon, respectively.All three layers have nanometer-scale values for roughness, namely 1.7 nm for ZnO/glass, 2.4 nm for ZnO/silicon, and 6.8 nm for ZnO/kapton. The higher value for the ZnO layer deposited on kapton substrate makes this sample suitable for solar cells applications. Transmission spectra of these thin films are strongly influenced by deposition conditions. With our deposition conditions the transparent conducting ZnO layer has a good transmission (78-88%) in VIS and NIR domains. The values of the energy gap calculated from the absorption spectra are 3.23 eV for ZnO sample deposited onto glass substrate and 3.30 eV for the ZnO sample deposited onto kapton polymer foil substrate. The influence of deposition arrangement and oxidation conditions on the structural, morphological, and optical properties of the ZnO films is discussed in the present paper.  相似文献   

10.
Platinum intermediate transparent and conducting ITO/metal/ITO (IMI) multilayered films were deposited by RF and DC magnetron sputtering on polycarbonate substrates without intentional substrate heating. Changes in the microstructure and optoelectrical properties of the films were investigated with respect to the thickness of the intermediate Pt layer in the IMI films. The thickness of Pt film was varied from 5 to 20 nm.In XRD measurements, neither ITO single-layer films nor IMI multilayer films showed any characteristic diffraction peaks for In2O3 or SnO2. Only a weak diffraction peak for Pt (1 1 1) was obtained in the XRD spectra. Thus, it can be concluded that the Pt-intermediated films in the IMI films did not affect the crystallinity of the ITO films. However, equivalent resistivity was dependent on the presence and thickness of the Pt-intermediated layer. It decreased as low as 3.3×10−4 Ω cm for ITO 50 nm/Pt 20 nm/ITO 30 nm films. Optical transmittance was also strongly influenced by the Pt-intermediated layer. As Pt thickness in the IMI films increased, optical transmittance decreased to as low as 30% for ITO 50 nm/Pt 20 nm/ITO 30 nm films.  相似文献   

11.
The influence of a Bi surfactant layer on the structural and magnetic properties of Co/Cu multilayers grown onto Cu(1 1 0) buffer layer by RF magnetron sputtering has been studied. The results of X-ray diffraction revealed the initial deposition of a 2.0 Å-thick Bi layer onto the Cu buffer layer prior to the deposition of the Co/Cu multilayer yielded high-quality fcc-(1 1 0) oriented epitaxial films. The X-ray photoelectron spectra revealed that Bi was segregated at around the top of the surface. Therefore, Bi was concluded to be an effective surfactant to enhance the epitaxial growth of Co/Cu(1 1 0) multilayer. The maximum giant magnetoresistance and antiferromagnetic interlayer coupling ratios of the Co/Cu multilayers were increased by using the Bi surfactant layer.  相似文献   

12.
Direct current magnetron sputter-deposited ZnO thin films   总被引:1,自引:0,他引:1  
Zinc oxide (ZnO) is a very promising electronic material for emerging transparent large-area electronic applications including thin-film sensors, transistors and solar cells. We fabricated ZnO thin films by employing direct current (DC) magnetron sputtering deposition technique. ZnO films with different thicknesses ranging from 150 nm to 750 nm were deposited on glass substrates. The deposition pressure and the substrate temperature were varied from 12 mTorr to 25 mTorr, and from room temperature to 450 °C, respectively. The influence of the film thickness, deposition pressure and the substrate temperature on structural and optical properties of the ZnO films was investigated using atomic force microscopy (AFM) and ultraviolet-visible (UV-Vis) spectrometer. The experimental results reveal that the film thickness, deposition pressure and the substrate temperature play significant role in the structural formation and the optical properties of the deposited ZnO thin films.  相似文献   

13.
ZnO thin films with different thickness (the sputtering time of ZnO buffer layers was 10 min, 15 min, 20 min, and 25 min, respectively) were first prepared on Si substrates using radio frequency magnetron sputtering system and then the samples were annealed at 900 °C in oxygen ambient. Subsequently, a GaN epilayer about 500 nm thick was deposited on ZnO buffer layer. The GaN/ZnO films were annealed in NH3 ambient at 950 °C. X-ray diffraction (XRD), atom force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL) were used to analyze the structure, morphology, composition and optical properties of GaN films. The results show that their properties are investigated particularly as a function of the sputtering time of ZnO layers. For the better growth of GaN films, the optimal sputtering time is 15 min.  相似文献   

14.
Artificially modulated CrAlN/AlON nanomultilayers were synthesized by direct current reactive magnetron sputtering. The microstructure and mechanical properties were evaluated by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and nano-indentation techniques. The crystallization of AlON layer and its influence on the mechanical property of the nanomultilayers were studied. The results revealed that, under the template effect of NaCl structural CrAlN layer, amorphous AlON was forced to crystallize and grew epitaxially with CrAlN layer when AlON layer thickness was below 0.9 nm, leading to an increase of hardness up to 32.8 GPa. With the further increase of the AlON layer thickness, AlON layer gradually transformed into amorphous structure and blocked epitaxial growth of the multilayers, resulting in the decrease of hardness. The effect of CrAlN layer thickness on hardness of CrAlN/AlON nanomultilayers was also investigated. With the decrease of CrAlN layer thickness, the hardness increased gradually. The maximum hardness was 34.7 GPa when CrAlN layer thickness of was 3.0 nm. The strengthen mechanism of CrAlN/AlON nanomultilayers was finally discussed.  相似文献   

15.
Three-layered ZnO/Ag–Ti/ZnO structures were prepared using both the sol-gel technique and DC magnetron sputtering. This study focuses on the electrical and optical properties of the ZnO/Ag–Ti/ZnO multilayers with various thicknesses of the Ag–Ti layer. The ZnO thin film prepared by the sol–gel method was dried at 300°C for 3 minutes, and a fixed thickness of 20 nm was obtained. The thickness of the Ag–Ti thin film was controlled by varying the sputtering time. The Ag–Ti layer substantially reduced the electrical resistivity of the sol–gel-sprayed ZnO thin films. The sheet resistance of the Ag–Ti layer decreased dramatically and then became steady beyond a sputtering time of 60 s. The sputtering time of Ag–Ti thin film deposition was determined to be 60 s, taking into account the optical transmittance. Consequently, the transmittance of the ZnO/Ag–Ti/ZnO multilayer films was 71% at 550 nm and 60% at 350 nm. The sheet resistance was 4.2 Ω/sq.  相似文献   

16.
We report the application of aluminum doped ZnO (ZnO:Al) layer as a buffer on ITO glass for fabrication of non-inverted polymer solar cells. The ZnO:Al thin film was deposited using DC magnetron sputtering, with the thickness being varied from 23 to 100 nm. The devices showed most discernible improvements in their efficiencies when a thin layer of ZnO:Al film of thickness ∼40 nm was introduced. The observed enhancement in short circuit current density and open circuit voltage is likely attributed to the role of the ZnO:Al film as an optical tuner and an interfacial diffusion barrier. The result suggests that a metal oxide layer inserted between ITO and polymer layers can be a route for improving both efficiency and stability of polymer solar cells.  相似文献   

17.
A series of ZnO thin films were deposited on ZnO buffer layers by DC reactive magnetron sputtering. The buffer layer thickness determination of microstructure and optical properties of ZnO films was investigated by X-ray diffraction (XRD), photoluminescence (PL), optical transmittance and absorption measurements. XRD results revealed that the stress of ZnO thin films varied with the buffer layer thickness. With the increase of buffer layer thickness, the band gap edge shifted toward longer wavelength. The near-band-edge (NBE) emission intensity of ZnO films deposited on ZnO buffer layer also varied with the increase of thickness due to the spatial confinement increasing the Coulomb interaction between electrons and holes. The PL measurement showed that the optimum thickness of the ZnO buffer layer was around 12 nm.  相似文献   

18.
ITO/Ag/ITO multilayers have been prepared onto conventional soda lime glass substrates by sputtering at room temperature. The optical and electrical characteristics of single layer and multilayer structures have been investigated as a function of the Ag and ITO film thicknesses. Transmittance and sheet resistance values are found mainly dependent on the Ag film thickness; whereas the wavelength range at which the maximum transmittance is achieved can be changed by adjusting the ITO films thickness. ITO/Ag/ITO electrodes with sheet resistance below 6 Ω/sq have been obtained for Ag film thickness above 10 nm and ITO layers thickness in the 30-50 nm range. These multilayers also show high transmittance in the visible spectral region, above 90% by discounting the glass substrate, with a maximum that is located at higher wavelengths for thicker ITO.  相似文献   

19.
Transparent conductive ZnO:Ga thin films were deposited on Corning 1737 glass substrate by pulsed direct current (DC) magnetron sputtering. The effects of process parameters, namely pulse frequency and film thickness on the structural and optoelectronic properties of ZnO:Ga thin films are evaluated. It shows that highly c-axis (0 0 2) oriented polycrystalline films with good visible transparency and electrical conductivity were prepared at a pulsed frequency of 10 kHz. Increasing the film thickness also enlarged the grain size and carrier mobility which will subsequently lead to the decrease in resistivity. In summary, ZnO:Ga thin film with the lowest electrical resistivity of 2.01 × 10−4 Ω cm was obtained at a pulse frequency of 10 kHz with 500 nm in thickness. The surface RMS (root mean square) roughness of the film is 2.9 nm with visible transmittance around 86% and optical band gap of 3.83 eV.  相似文献   

20.
We demonstrate that vertical well-aligned crystalline ZnO nanowire arrays were grown on ZnO/glass substrates by a low-temperature solution method. Different thicknesses of ZnO seed layers on glass substrates were prepared by radio-frequency sputtering. In this work it was found that the morphology of ZnO nanowires strongly depends on the thickness of ZnO seed layers. The average diameter of nanowires is increased from 50 to 130 nm and the nanowire density is decreased from 110 to 60 μm−2 while the seed layer thickness is varied from 20 to 1000 nm. The improved control of the morphology of ZnO nanowire arrays may lead to an enhanced carrier collection of hybrid polymer photovoltaic devices based on ZnO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号