首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The Auto-Importance Sampling(AIS) method is a Monte Carlo variance reduction technique proposed for deep penetration problems, which can significantly improve computational efficiency without pre-calculations for importance distribution. However, the AIS method is only validated with several simple examples, and cannot be used for coupled neutron-photon transport. This paper presents improved algorithms for the AIS method, including particle transport, fictitious particle creation and adjustment, fictitious surface geometry, random number allocation and calculation of the estimated relative error. These improvements allow the AIS method to be applied to complicated deep penetration problems with complex geometry and multiple materials. A Completely coupled Neutron-Photon Auto-Importance Sampling(CNP-AIS) method is proposed to solve the deep penetration problems of coupled neutron-photon transport using the improved algorithms. The NUREG/CR-6115 PWR benchmark was calculated by using the methods of CNP-AIS, geometry splitting with Russian roulette and analog Monte Carlo, respectively. The calculation results of CNP-AIS are in good agreement with those of geometry splitting with Russian roulette and the benchmark solutions. The computational efficiency of CNP-AIS for both neutron and photon is much better than that of geometry splitting with Russian roulette in most cases, and increased by several orders of magnitude compared with that of the analog Monte Carlo.  相似文献   

2.
Implicit Monte Carlo (IMC) and Implicit Monte Carlo Diffusion (IMD) are approaches to the numerical solution of the equations of radiative transfer. IMD was previously derived and numerically tested on grey, or frequency-integrated problems [1]. In this research, we extend Implicit Monte Carlo Diffusion (IMD) to account for frequency dependence, and we implement the difference formulation [2] as a source manipulation variance reduction technique. We derive the relevant probability distributions and present the frequency dependent IMD algorithm, with and without the difference formulation. The IMD code with and without the difference formulation was tested using both grey and frequency dependent benchmark problems. The Su and Olson semi-analytic Marshak wave benchmark was used to demonstrate the validity of the code for grey problems [3]. The Su and Olson semi-analytic picket fence benchmark was used for the frequency dependent problems [4]. The frequency dependent IMD algorithm reproduces the results of both Su and Olson benchmark problems. Frequency group refinement studies indicate that the computational cost of refining the group structure is likely less than that of group refinement in deterministic solutions of the radiation diffusion methods. Our results show that applying the difference formulation to the IMD algorithm can result in an overall increase in the figure of merit for frequency dependent problems. However, the creation of negatively weighted particles from the difference formulation can cause significant numerical instabilities in regions of the problem with sharp spatial gradients in the solution. An adaptive implementation of the difference formulation may be necessary to focus its use in regions that are at or near thermal equilibrium.  相似文献   

3.
用求解概率密度函数输运方程的方法模拟湍流自由射流周向阳,郑楚光,马毓义(华中理工大学煤燃烧国家重点实验室武汉430074)关键词概率密度函数;湍流;自由射流1前言和通常的湍流统计矩模型(如k-ε模型或Reynolds应力模型等)相比,用求解速度和标量...  相似文献   

4.
In graded index media, the ray goes along a curved path determined by Fermat principle. Generally, the curved ray trajectory in graded index media is a complex implicit function, and the curved ray tracing is very difficult and complex. Only for some special refractive index distributions, the curved ray trajectory can be expressed as a simple explicit function. Two important examples are the layered and the radial graded index distributions. In this paper, the radiative heat transfer problems in two-dimensional square semitransparent with layered and radial graded index distributions are analyzed. After deduction of the ray trajectory, the radiative heat transfer problems are solved by using the Monte Carlo curved ray-tracing method. Some numerical solutions of dimensionless net radiative heat flux and medium temperature are tabulated as the benchmark solutions for the future development of approximation techniques for multi-dimensional radiative heat transfer in graded index media.  相似文献   

5.
蔡利 《强激光与粒子束》2018,30(2):026005-1-026005-6
一种基于B1均匀化方程的泄漏修正模型在连续能量蒙特卡罗程序TRIPOLI4中得以实现并且用于制作少群截面参数。此蒙卡泄漏修正模型通过在连续能量的蒙卡模拟以及求解B1均匀化方程之间迭代,最终得到蒙卡模拟下的临界状态。通过此方法得到的少群截面参数较其他蒙卡以及确定论方法有两点显著优势:用于求解B1均匀化方程的少群常数是用通过临界状态的通量谱得到的;考虑了泄漏效应的蒙卡模拟可以更真实地反映组件计算时的能谱状态。为验证此泄漏修正模型,一个由连续能量的TRIPOLI4模拟而得到的数值临界实验被用于分析与比较。通过与其他蒙卡程序SERPENT以及确定论程序ECCO进行结果对比,可证明此B1泄漏修正方法能够给出更精确的用于堆芯计算的少群截面参数。  相似文献   

6.
Monte Carlo and overlapping distributions Monte Carlo (ODMC) techniques are employed to simulate grain boundary (GB) segregation in a number of single-phase binary metallic alloys—the Au-Pt, Cu-Ni, Ni-Pd, and Ni-Pt systems. For a series of symmetric [001] twist and [001] tilt boundaries, with coincident site lattice (CSL) structures, we demonstrate that the Gibbsian interfacial excess of solute is a systematic function of the misorientation angle. We also explore in detail whether the GB solid solution behavior is ideal or nonideal by comparing the results of Monte Carlo and ODMC simulations. The range of binding free energies of specific atomic sites at GBs for solute atoms is also studied. The simulational results obtained demonstrate that the thermodynamic and statistical thermodynamic models commonly used to explain GB segregation are too simple to account for the microscopic segregation patterns observed, and that it is extremely difficult. If not impossible, to extract the observed microscopic information employing macroscopic models.  相似文献   

7.
Application of the lattice Boltzmann method (LBM) recently proposed by Asinari et al. [Asinari P, Mishra SC, Borchiellini R. A lattice Boltzmann formulation to the analysis of radiative heat transfer problems in a participating medium. Numer Heat Transfer B 2010; 57:126–146] is extended to the analysis of transport of collimated radiation in a planar participating medium. To deal with azimuthally symmetric radiation in planar medium, a new lattice structure for the LBM is used. The transport of the collimated component in the medium is analysed by two different, viz., flux splitting and direct approaches. For different angles of incidence of the collimated radiation, the LBM formulation is tested for the effects of the extinction coefficient, the anisotropy factor, and the boundary emissivities on heat flux and emissive power distributions. Results are compared with the benchmark results obtained using the finite volume method. Both the approaches in LBM provide accurate results.  相似文献   

8.
Recently, QED bremsstrahlung in B meson decays into pair of scalars (πs and/or Ks) has become of interest. If experimental acceptance must be taken into account, the PHOTOS Monte Carlo technique is often used in experimental simulations. We will use scalar QED to benchmark PHOTOS, even though this theory is of limited use for complex objects. We present the analytical form of the kernel used in the older versions of PHOTOS, and the new, exact (scalar QED) one. Matrix element and phase-space Jacobians are separated in the final weight, and future extensions based on measurable electromagnetic form-factors are thus possible. The massive phase-space is controlled in the program with no approximations. Thanks to the iterative solution, all leading and next to leading logarithmic terms are properly reproduced by the Monte Carlo simulation. Simultaneously, full differential distributions over the complete multiple-body phase-space are provided. An agreement of better than 0.01% with independent calculations of scalar QED is demonstrated. PACS 13.20.He; 13.40.Ks  相似文献   

9.
描述一个实用蒙特卡罗抽样库(MCSL).它可以提供:伪随机数产生的优良算法和程序;重要分布的最佳随机抽样方法和程序;在粒子输运问题中位置、能量、方向的常用分布的抽样程序.还配有一个专门的抽样库检验系统.它在微机上运行,安装简单,使用方便,有较强的实用性和可移植性.  相似文献   

10.
刘鹏  史敦福  李康  邓力 《强激光与粒子束》2018,30(1):016010-1-016010-4
蒙特卡罗与热工水力的耦合计算是目前反应堆数值模拟的重要研究方向,在蒙特卡罗方法连续能量点截面的基础上结合热工程序的温度反馈,反应堆中子计算的准确性得到大幅提高。为了提高计算精度,堆芯模型分辨率也需进一步提高,相比于组件均匀化模型,pin-by-pin的建模方式能够获得更好的结果。利用蒙特卡罗程序JMCT与子通道程序COBRA-EN实现了蒙特卡罗-热工的内耦合,内耦合方式通过内存进行数据传递,其计算效率及安全性均优于外耦合方法。随后利用NURISP项目迷你堆的pin-by-pin模型对耦合程序进行验证。计算结果与同类耦合程序相似,验证了程序的准确性。同时,对耦合过程的收敛性问题进行了初步分析。  相似文献   

11.
In this paper we develop a deterministic high order accurate finite-difference WENO solver to the solution of the 1-D Boltzmann–Poisson system for semiconductor devices. We follow the work in Fatemi and Odeh [9] and in Majorana and Pidatella [16] to formulate the Boltzmann–Poisson system in a spherical coordinate system using the energy as one of the coordinate variables, thus reducing the computational complexity to two dimensions in phase space and dramatically simplifying the evaluations of the collision terms. The solver is accurate in time hence potentially useful for time-dependent simulations, although in this paper we only test it for steady-state devices. The high order accuracy and nonoscillatory properties of the solver allow us to use very coarse meshes to get a satisfactory resolution, thus making it feasible to develop a 2-D solver (which will be five dimensional plus time when the phase space is discretized) on today’s computers. The computational results have been compared with those by a Monte Carlo simulation and excellent agreements have been found. The advantage of the current solver over a Monte Carlo solver includes its faster speed, noise-free resolution, and easiness for arbitrary moment evaluations. This solver is thus a useful benchmark to check on the physical validity of various hydrodynamic and energy transport models. Some comparisons have been included in this paper.  相似文献   

12.
定常粒子输运蒙特卡罗并行计算是成功的,因为粒子游动是独立的,可以把模拟的粒子数等分到每个处理器去.然而,对非定常问题,由于每个时间步涉及散射源和几何网格的通讯,它严重的制约了并行规模,导致并行不可扩展.研究了两种算法,采用自适应分配处理器,提高了加速比和处理器的利用率;采用蒙特卡罗分层抽样大大降低了处理器之间散射源的通讯量,并行可扩展性显著改善,取得了理想的加速比.  相似文献   

13.
The neutron leakage fluxes from the lunar surface are calculated by Monte Carlo transport code based on Geant4. The integral fluxes of fast neutrons, epi-thermal neutrons and thermal neutrons are analyzed. Numerical results for 20 kinds of lunar soils and 7 minerals show that the fast neutron fluxes are linearly related to the average atomic mass numbers of the lunar materials used in simulations. Meanwhile, the average atomic mass numbers are strongly modulated by the abundances of iron (Fe) and titanium (Ti), and a linear relationship between the average atomic mass numbers and the abundances of Fe and Ti is found. Furthermore, the results show that the ratios of epi-thermal to thermal fluxes for lunar soils are linearly related to the macroscopic absorption cross sections of lunar materials, and that the macroscopic absorption cross sections monotonically increase with the abundances of Fe and Ti by a simple function. Then we reach the conclusion that the neutron fluxes can provide the information about the Fe and Ti contents.  相似文献   

14.
A simple model for the numerical determination of separation effects in seeded atomic gas flows is presented. The model is based on the known possibility to provide a statistically convergent estimate of the exact solution for a linear transport equation using the test particle Monte Carlo method. Accordingly, the flow field of the main gas is preliminary calculated and as a second step the linear transport equations obtained by fixing the target distribution in the collision term of the Boltzmann equation for both main and minority components are solved. Both solutions are based on appropriately devised test particle Monte Carlo methods. The second step, the critical one in evaluating the separation effects, is exact and thereby completely free of numerical diffusion. The model is described in details and illustrated by 2D test cases of atomic separation in shock fronts.  相似文献   

15.
The experimental data on energy and multiplicity distributions of protons and momentum spectra of deuterons emitted in the reactions of pions and protons of energy ranging from 2.5 to 200 GeV with several nuclei are compared to the calculations based upon two different model approaches: DCM Monte Carlo [3] code and the tube-fireball (TF) model [4]. The results of this confrontation are discussed within the framework of the intranuclear interaction mechanism assumed. A detailed study of the intranuclear scenario presented by the DCM Monte Carlo program gives grounds to build simplified analytic models like the TF which may turn out to be very useful in many practical problems as being of a predictive nature. The text was submitted by the authors in English.  相似文献   

16.
马文娟  高峰  朱苹苹  易茜 《光子学报》2014,40(7):1117-1121
从辐射传输方程出发,应用球谐函数方法对辐射率进行多项式展开,并利用球谐函数的正交性和递推性,在二维笛卡儿坐标下,导出了三阶展开的球谐函数微分方程组(P3近似),改进了以往成像文献中忽略各项异性因子的P3近似,并用有限元方法对二维圆域均匀和非均匀两种情况做了数值模拟.与漫射近似模型相比较,P3近似能更准确地描述光源附近及吸收较强情况下边界的光辐射分布情况.  相似文献   

17.
Treatment planning in proton therapy requires the calculation of absorbed dose distributions on beam shaping components and the patient anatomy. Analytical pencil-beam dose algorithms commonly used are not always accurate enough. The Monte Carlo approach is more accurate but extremely computationally intensive. The Fast Dose Calculator, a track-repeating algorithm, has been proposed as an alternative fast and accurate dose calculation. In this work FDC is applied to a proton therapy patient thoracic anatomy.  相似文献   

18.
KYCORE程序是中国核动力研究设计院开发的径向MOC(特征线方法)与轴向SN耦合三维中子输运程序。KYCORE将二维MOC与一维SN通过角通量实现高精度耦合,并通过粗网有限差分实现快速收敛,是目前可工程化应用于三维中子输运计算中精度最高的方法之一。介绍了2D/1D计算与加速理论,并通过与蒙特卡罗程序的计算对比,数值验证了KYCORE三维中子计算的准确性与高效性。  相似文献   

19.
A previously described algorithm [T.A. Brunner, T.J. Urbatsch, T.M. Evans, N.A. Gentile, Comparison of four parallel algorithms for domain decomposed implicit Monte Carlo, Journal of Computational Physics 212 (2) (2006) 527–539] for doing domain decomposed particle Monte Carlo calculations in the context of thermal radiation transport has been improved. It has been extended to support cases where the number of particles in a time step are unknown at the beginning of the time step. This situation arises when various physical processes, such as neutron transport, can generate additional particles during the time step, or when particle splitting is used for variance reduction. Additionally, several race conditions that existed in the previous algorithm and could cause code hangs have been fixed. This new algorithm is believed to be robust against all race conditions. The parallel scalability of the new algorithm remains excellent.  相似文献   

20.
基于自主研制的三维中子-光子耦合输运蒙特卡罗通用程序JMCT(J Monte Carlo Transport Code),采用连续点截面,对国际基准屏蔽VENUS-III模型开展精细建模和中子输运临界及屏蔽计算.临界计算得到系统keff、重要区域的通量及能谱.结果表明,JMCT和MCNP程序的重要区域体通量计数吻合较好,偏差均在1%以内.深穿透屏蔽计算采用外源模式,点探测器计数,JMCT计算值与实验测量值偏差在15%以内,满足屏蔽设计对误差的要求.初步验证了JMCT程序临界及屏蔽计算的可用性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号