首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Rechargeable Li‐O2 batteries are promising candidates for electric vehicles due to their high energy density. However, the current development of Li‐O2 batteries demands highly efficient air cathode catalysts for high capacity, good rate capability, and long cycle life. In this work, a hydrothermal‐calcination method is presented to prepare a composite of Co3O4 hollow nanoparticles and Co organic complexes highly dispersed on N‐doped graphene (Co–NG), which acts as a bifunctional air cathode catalyst to optimize the electrochemical performances of Li‐O2 batteries. Co–NG exhibits an outstanding initial discharge capacity up to 19 133 mAh g?1 at a current density of 200 mA g?1. In addition, the batteries could sustain 71 cycles at a cutoff capacity of 1000 mAh g?1 with low overpotentials at the current density of 200 mA g?1. Co–NG composites are attractive as air cathode catalysts for rechargeable Li‐O2 batteries.  相似文献   

2.
Graphene‐based phosphorus‐doped carbon (GPC) is prepared through a facile and scalable thermal annealing method by triphenylphosphine and graphite oxide as precursor. The P atoms are successfully doped into few layer graphene with two forms of P–O and P–C bands. The GPC used as anode material for Na‐ion batteries delivers a high charge capacity 284.8 mAh g?1 at a current density of 50 mA g?1 after 60 cycles. Superior cycling performance is also shown at high charge?discharge rate: a stable charge capacity 145.6 mAh g?1 can be achieved at the current density of 500 mA g?1 after 600 cycles. The result demonstrates that the GPC electrode exhibits good electrochemical performance (higher reversible charge capacity, super rate capability, and long‐term cycling stability). The excellent electrochemical performance originated from the large interlayer distance, large amount of defects, vacancies, and active site caused by P atoms doping. The relationship of P atoms doping amount with the Na storage properties is also discussed. This superior sodium storage performance of GPC makes it as a promising alternative anode material for sodium‐ion batteries.  相似文献   

3.
A hierarchical MoS2 architecture composed of nanosheet-assembled microspheres with an expanded interplanar spacing of the (002) planes was successfully prepared via a simple hydrothermal reaction. Electron microscopy studies revealed formation of the MoS2 microspheres with an average diameter of 230 nm. It was shown that the hierarchical structure of MoS2 microspheres possesses both the merits of nanometer-sized building blocks and micrometer-sized assemblies, which offer high surface area for fast kinetics and buffers the volume expansion during lithium insertion/deinsertion, respectively. The micrometer-sized assemblies were found to contribute to the enhanced electrochemical stabilities of the electrode materials. The mentioned advantages of the MoS2 electrode prepared in this work allowed enhanced cyclability and high rate capability of the material. Along with this, the material delivered a high initial discharge capacity of 1206 mAh g?1 and a reversible discharge capacity of 653 mAh g?1 after 100 cycles at a current density of 100 mA g?1. Furthermore, the material delivered a high reversible capacity of 480 mAh g?1 at a high current density of 1000 mA g?1.  相似文献   

4.
Porous electrode materials with large specific surface area, relatively short diffusion path, and higher electrical conductivity, which display both better rate capabilities and good cycle lives, have huge benefits for practical applications in lithium‐ion batteries. Here, uniform porous NiCo2O4 nanorods (PNNs) with pore‐size distribution in the range of 10–30 nm and lengths of up to several micrometers are synthesized through a convenient oxalate co‐precipitation method followed by a calcining process. The PNN electrode exhibits high reversible capacity and outstanding cycling stability (after 150 cycles still maintain about 650 mA h g?1 at a current density of 100 mA g?1), as well as high Coulombic efficiency (>98%). Moreover, the PNNs also exhibit an excellent rate performance, and deliver a stable reversible specific capacity of 450 mA h g?1 even at 2000 mA g?1. These results demonstrate that the PNNs are promising anode materials for high‐performance Li‐ion batteries.  相似文献   

5.
3D reduced graphene oxide (rGO)‐wrapped Ni3S2 nanoparticles on Ni foam with porous structure is successfully synthesized via a facile one‐step solvothermal method. This unique structure and the positive synergistic effect between Ni3S2 nanoparticles and graphene can greatly improve the electrochemical performance of the NF@rGO/Ni3S2 composite. Detailed electrochemical measurements show that the NF@rGO/Ni3S2 composite exhibits excellent supercapacitor performance with a high specific capacitance of 4048 mF cm?2 (816.8 F g?1) at a current density of 5 mA cm?2 (0.98 A g?1), as well as long cycling ability (93.8% capacitance retention after 6000 cycles at a current density of 25 mA cm?2). A novel aqueous asymmetric supercapacitor is designed using the NF@rGO/Ni3S2 composite as positive electrode and nitrogen‐doped graphene as negative electrode. The assembled device displays an energy density of 32.6 W h kg?1 at a power density of 399.8 W kg?1, and maintains 16.7 W h kg?1 at 8000.2 W kg?1. This outstanding performance promotes the as‐prepared NF@rGO/Ni3S2 composite to be ideal electrode materials for supercapacitors.  相似文献   

6.
Three‐dimensional (3D) multilayer molybdenum disulfide (MoS2)/reduced graphene oxide (RGO) nanocomposites are prepared by a solution‐processed self‐assembly based on the interaction using different sizes of MoS2 and GO nanosheets followed by in situ chemical reduction. 3D multilayer assemblies with MoS2 wrapped by large RGO nanosheets and good interface are observed by transmission electron microscopy. The interaction of Na+ ions with oxygen‐containing groups of GO is also investigated. The measurement of lithium ion batteries (LIBs) shows that MoS2/RGO anode nanocomposite with a weight ratio of MoS2 to GO of 3:1 exhibits an excellent rate performance of 750 mAh g?1 at 3 A g?1 outperforming many previous studies and a high reversible capacity up to ≈1180 mAh g?1 after 80 cycles at 100 mA g?1. Good rate performance and high capacity of MoS2/RGO with 3D unique layered‐structures are attributed to the combined effects of continuous conductive networks of RGO, good interface facilitating charge transfer, and strong RGO sheets preventing the volume expansion. Results indicate that 3D multilayer MoS2/RGO prepared by a facile solution‐processed assembly can be developed to be an excellent nanoarchitecture for high‐performance LIBs.  相似文献   

7.
This study presents a general approach for the synthesis of carbon‐encapsulated wire‐in‐tube Co3O4/MnO2 heterostructure nanofibers (Co3O4/MnO2@C) via electrospinning followed by calcination. The as‐synthesized Co3O4/MnO2@C is investigated as the sodium‐ion batteries anode material, which not only exhibits a high reversible capacity of 306 mAh g−1 at 100 mA g−1 over 200 cycles, but also shows a cycling stability of 126 mAh g−1 after 1000 cycles at a high current density of 800 mA g−1. The excellent electrochemical performance can be ascribed to the contribution from carbon‐encapsulated outer‐tube Co3O4 and inner‐wire MnO2 heterostructures, which offer a large internal space and good electrical conductivity. The present work can be helpful in providing new insights into heterostructures for sodium‐ion batteries and other applications.  相似文献   

8.
Si nanoparticle (Si‐NP) composite anode with high rate and long cycle life is an attractive anode material for lithium‐ion battery (LIB) in hybrid electric vehicle (HEV)/pure electric vehicle (PEV). In this work, a carbon nanotube (CNT)/reduced graphene oxide (rGO)/Si nanoparticle composite with alternated structure as Li‐ion battery anode is prepared. In this structure, rGO completely wraps the entire Si/CNT networks by different layers and CNT networks provide fast electron transport pathways with reduced solid‐state diffusion, so that the stable solid‐electrolyte interphase layer can form on the whole surface of the matrix instead of on single Si nanoparticle, which ensure the high cycle stability to achieve the excellent cycle performance. As a result, the CNT/rGO/Si‐NP anode exhibits high performances with long cycle life (≈455 mAh g?1 at 15 A g?1 after 2000 cycles), high specific charge capacity (≈2250 mAh g?1 at 0.2 A g?1, ≈650 mAh g?1 at 15 A g?1), and fast charge/discharge rates (up to 16 A g?1). This nanostructure anode with facile and low‐cost synthesis method, as well as excellent electrochemical performances, makes it attractive for the long life cycles at high rate of the next generation LIB applications in HEV/PEV.  相似文献   

9.
A carbothermal reaction route to Ge nanoparticle homogeneously encapsulated hollow carbon boxes from NH4H3Ge2O6/resorcinol formaldehyde precursors is designed, using NH4H3Ge2O6 as a Ge precursor from commercial GeO2 and NH4OH. The Ge/C hybrid anode for sodium ion battery displays a higher Na+ storage capacity of 346 mA h g?1 after 500 cycles at a current density of 100 mA h g?1, almost approaching the theoretical capacity of Ge. Furthermore, Ge/C anode shows significantly improved electrochemical performance for Li+ storage, showing a higher initial Coulombic efficiency of 85.1% and a superior reversible capacity of 1336 mA h g?1 at a high current density of 200 mA g?1 after 150 cycles. An excellent rate capability with a capacity of 825 mA h g?1 at a current density of 4.0 A g?1 can be obtained based on Ge/C anodes. The enhanced electrochemical performance can be attributed to the unique microstructures of Ge/C hybrid anode. The internal void space of hollow carbon boxes can accommodate the volume expansion of Ge during lithiation or sodiation process, thus preserving the structural integrity of electrode material. The interconnected carbon shell can increase the electronic conductivity of the electrode, resulting in the high rate capability and cycling stability.  相似文献   

10.
Hollow NiO–carbon hybrid nanoparticle aggregates are fabricated through an environmental template‐free solvothermal alcoholysis route. Controlled hollow structure is achieved by adjusting the ratio of ethylene glycol to water and reaction time of solvothermal alcoholysis. Amorphous carbon can be loaded on the NiO nanoparticles uniformly in the solvothermal alcoholysis process, and the subsequent calcination results in the formation of hollow NiO–C hybrid nanoparticle aggregates. As anode materials for lithium‐ion batteries, it exhibits a stable reversible capacity of 622 mAh g?1, and capacity retention keeps over 90.7% after 100 cycles at constant current density of 200 mA g?1. The NiO–C electrode also exhibits good rate capabilities. The unique hollow structures can shorten the length of Li‐ion diffusion and offer a sufficient void space, which sufficiently alleviates the mechanical stress caused by volume change. The hybrid carbon in the particles renders the electrode having a good electronic conductivity. Here, the hollow NiO‐C hybrid electrode exhibits excellent electrochemical performance.  相似文献   

11.
Spinel MnCo2O4 nanoparticles on nitrogen‐doped reduced graphene oxide (MnCo2O4/NGr) are synthesized for advanced zinc–air batteries with remarkable cyclic efficiency and stability. The synthesized MnCo2O4/NGr exhibits good oxygen‐reduction reaction (ORR) activity with half‐wave potential E 1/2 of 0.85 V (vs reversible hydrogen electrode (RHE)), comparable to commercial Pt/C with E 1/2 of 0.88 V (vs RHE) along with superior oxygen electrode activity ΔE = 0.91 V for the ORR/OER (oxygen‐evolution reaction) in alkaline media. Durability tests confirm that MnCo2O4/NGr is more stable than Pt/C in alkaline environment. MnCo2O4/NGr functions with stable discharge profile of 1.2 V at 20 mA cm?2, large discharge capacity of 707 mAh g?1Zn at 40 mA cm?2 and a high energy density of 813 Wh kg?1Zn in a mechanically rechargeable zinc–air battery. The electrically rechargeable MnCo2O4/NGr zinc–air battery displays hybrid behavior with both Faradaic and oxygen redox charge–discharge characteristics, operating at higher voltage and providing higher power density and excellent cyclic efficiency of 86% for over 100 cycles compared to Pt/C with efficiency of around 60%. Moreover, hybrid zinc–air battery operates with a stable and energy efficient profile at different current densities.  相似文献   

12.
The exploration of high‐energy and stable cathode materials is highly desirable and challenging for the development of advanced Zn‐based batteries. In this work, a facile pyrolysis method is reported to synthetize Ni3S2/carbon nanocomposite as high‐performance cathode by employing ion exchange resin as a precursor. Attributing to the abundant active sites and enhanced conductivity from well binding between Ni3S2 and carbon, a markedly high capacity of 234.3 mA h g?1 is obtained for this Ni3S2/carbon at a high current density of 6.9 A g?1. Moreover, a Zn‐based battery is demonstrated by using the Ni3S2/carbon as a cathode and Zn plate as an anode, which delivers a maximum power density of 58.6 kW kg?1, together with a peak energy density of 356 W h kg?1 and 93.7% capacity retention after 5000 charging–discharging cycles. This simple synthetic strategy to achieve robust Ni‐based composite electrodes may open up new opportunities to design other transition metal–based electrodes for energy storage applications.  相似文献   

13.
1D nanostructured metal oxides with porous structure have drawn wide attention to being used as high‐performance anode materials for lithium‐ion batteries (LIBs). This study puts forward a simple and scalable strategy to synthesize porous NiO nanorods with the help of a thermal treatment of metal‐organic frameworks in air. The NiO nanorods with an average diameter of approximately 38 nm are composed of nanosized primary particles. When evaluated as anode materials for LIBs, an initial discharge capacity of 743 mA h g?1 is obtained at a current density of 100 mA g?1, and a high reversible capacity is still maintained as high as 700 mA h g?1 even after 60 charge–discharge cycles. The excellent electrochemical performance is mainly ascribed to the 1D porous structure.  相似文献   

14.
Fabricating electrode materials with superior electrochemical performance remains a challenge. Here, a simple but effective strategy for the formation of metal oxide nanomaterials with superior performance has been developed. Silk protein nanofibers adhered on reduced graphene oxide (rGO) sheets are used as templates to regulate the formation of nanostructured iron oxide composites, achieving porous nanorod structures that could not be attained in control experiments. These porous nanorods demonstrate superior electrochemical performance as electrodes with retention of a capacity of 1495 mAh g?1 after 180 cycles at 0.2 C and a rate capability of 900 mAh g?1 at 2 C discharge rate. These new rGO/silk composite templates provide a more controllable environment for Fe2O3 fabrication, resulting in improved nanostructures and superior electrical performance. The strategy developed here should also be more broadly applicable in the design of metal oxide nanomaterials with specialized structures and useful performance.  相似文献   

15.
A facile strategy is developed to fabricate bicomponent CoO/CoFe2O4‐N‐doped graphene hybrids (CoO/CoFe2O4‐NG). These hybrids are demonstrated to be potential high‐performance anodes for lithium‐ion batteries (LIBs). The CoO/CoFe2O4 nanoplatelets are finely dispersed on the surface of N‐doped graphene nanosheets (CoO/CoFe2O4‐NG). The CoO/CoFe2O4‐NG electrode exhibits ultrahigh specific capacity with 1172 mA h g?1 at 500 mA g?1 and 970 mA h g?1 at 1000 mA g?1 as well as excellent cycle stability due to the synergetic effects of N‐doped graphene and CoO/CoFe2O4 nanoplatelets. The well‐dispersed bicomponent CoO/CoFe2O4 is responsible for the high specific capacity. The N‐doped graphene with high specific surface area has dual roles: to provide active sites for dispersing the CoO/CoFe2O4 species and to function as an electrical conducting matrix for fast charge transfer. This method provides a simple and efficient way to configure the hybridized electrode materials with high lithium storage capacity.  相似文献   

16.
The capacity loading per unit area is of importance as specific capacity while evaluating the lithium‐ion battery anode. However, the low conductivity of several advanced anode materials (such as molybdenum sulfide, MoS2) prohibits the wide application of materials. Nanostructural engineering becomes a key to overcome the obstacles. A one‐step in situ conversion reaction is employed to synthesize molybdenum oxide (MoO2)–MoS2 core–shell nanoarchitectures (MoO2@MoS2) by partially sulfiding MoO2 into MoS2 using sulfur. The MoO2@MoS2 displays a 3D architecture constructed by hundreds of MoS2 ultrathin sheets with several layers arranged and fixed to an MoO2 particle vertically with the size in the range of 200–500 nm. MoO2 acts as the molybdenum source for the synthesis of MoS2, as well as the conductive substrate. The designed 3D architectures with empty space between MoS2 layers can prevent the damage originated from volume change of MoS2 undergoing charge/discharge process. The lithium storage capacities of the MoO2@MoS2 3D architectures are higher and the stability has been significantly improved compared to pure MoS2. 4 mAh cm?2 capacity loading of MoO2@MoS2 has been achieved with a specific capacity of more than 1000 mAh g?1.  相似文献   

17.
3D vertically aligned carbon nanotubes (CNTs)/NiCo2O4 core/shell structures are successfully synthesized as binder‐free anode materials for Li‐ion batteries (LIBs) via a facile electrochemical deposition method followed by subsequent annealing in air. The vertically aligned CNTs/NiCo2O4 core/shell structures are used as binder‐free anode materials for LIBs and exhibit high and stable reversible capacity (1147.6 mAhg?1 at 100 mAg?1), excellent rate capability (712.9 mAh g?1 at 1000 mAg?1), and good cycle stability (no capacity fading over 200 cycles). The improved performance of these LIBs is attributed to the unique 3D vertically aligned CNTs/NiCo2O4 core/shell structures, which support high electron conductivity, fast ion/electron transport in the electrode and at the electrolyte/electrode interface, and accommodate the volume change during cycling. Furthermore, the synthetic strategy presented can be easily extended to fabricate other metal oxides with a controlled core/shell structure, which may be a promising electrode material for high‐performance LIBs.  相似文献   

18.
Bismuth sulfide nanorod array is directly grown on nickel foam (R‐Bi2S3/NF) to serve as a completely carbon and binder‐free 3D porous oxygen electrode material for lithium‐oxygen (Li‐O2) batteries. The synergistic effect of the fast kinetics of electron transport and gas and electrolyte diffusion provided by the continuous free‐standing network structure and the excellent electrocatalytic activity of the bismuth sulfide nanorod array enables outstanding performance of the oxygen electrode. Li‐O2 battery with the free‐standing R‐Bi2S3/NF oxygen electrode exhibits high energy efficiency (78.7%), good rate capability (4464 mA h g−1 at 1500 mA g−1), as well as excellent cyclability (146 cycles) while maintaining a moderate specific capacity of 1000 mA h g−1. The effect of cathodes with different reactant (O2) and intermediate (LiO2) adsorbability on the product (Li2O2) growth model is studied by first‐principle calculations. The strong O2 adsorption and weak LiO2 adsorption on Bi2S3 drives the growth of large‐size Li2O2 particles via solution growth model. Remarkably, the large‐area pouch‐type Li‐O2 battery delivers an energy density of 330 Wh kg−1. The present results open up a promising avenue toward developing novel electrode architecture for high‐performance Li‐O2 batteries through controlling morphology and functionality of porous electrodes.  相似文献   

19.
Nanostructured ternary/mixed transition metal oxides have attracted considerable attentions because of their high‐capacity and high‐rate capability in the electrochemical energy storage applications, but facile large‐scale fabrication with desired nanostructures still remains a great challenge. To overcome this, a facile synthesis of porous NiCoO2 nanofibers composed of interconnected nanoparticles via an electrospinning–annealing strategy is reported herein. When examined as anode materials for lithium‐ion batteries, the as‐prepared porous NiCoO2 nanofibers demonstrate superior lithium storage properties, delivering a high discharge capacity of 945 mA h g?1 after 140 cycles at 100 mA g?1 and a high rate capacity of 523 mA h g?1 at 2000 mA g?1. This excellent electrochemical performance could be ascribed to the novel hierarchical nanoparticle‐nanofiber assembly structure, which can not only buffer the volumetric changes upon lithiation/delithiation processes but also provide enlarged surface sites for lithium storage and facilitate the charge/electrolyte diffusion. Notably, a facile synthetic strategy for fabrication of ternary/mixed metal oxides with 1D nanostructures, which is promising for energy‐related applications, is provided.  相似文献   

20.
Polythiophene‐coated porous silicon core–shell nanospheres (Si@PTh) composite are synthesized by a simple chemical oxidative polymerization approach. The polythiophene acts as a flexible layer to hold silicon grains when they are repeatedly alloying/dealloying with lithium during the discharge/charge process. The long lifespan and high‐current‐density rate ­capability (at a current of 8 A g?1) of the Si@PTh composite are vastly improved compared with as‐prepared Si spheres. Typically, these Si@PTh composite electrodes achieve a reversible capacity of 1130.5 mA h g?1 at 1 A g?1 current density after 500 cycles, and can even possess a discharge capacity up to 451.8 mA h g?1 at 8 A g?1. The improved electrochemical performance can be ascribed to the synergy effects of the flexible PTh coating and the distinctive core–shell nanospheres with porous structure, which can largely alleviate the volume expansion of the Si during alloying with lithium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号