首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2D MoS2 has a significant capacity decay due to the stack of layers during the charge/discharge process, which has seriously restricted its practical application in lithium‐ion batteries. Herein, a simple preform‐in situ process to fabricate vertically grown MoS2 nanosheets with 8–12 layers anchored on reduced graphene oxide (rGO) flexible supports is presented. As an anode in MoS2/rGO//Li half‐cell, the MoS2/rGO electrode shows a high initial coulomb efficiency (84.1%) and excellent capacity retention (84.7% after 100 cycles) at a current density of 100 mA g?1. Moreover, the MoS2/rGO electrode keeps capacity as high as 786 mAh g?1 after 1000 cycles with minimum degradation of 54 µAh g?1 cycle?1 after being further tested at a high current density of 1000 mA g?1. When evaluated in a MoS2/rGO//LiCoO2 full‐cell, it delivers an initial charge capacity of 153 mAh g?1 at a current density of 100 mA g?1 and achieves an energy density of 208 Wh kg?1 under the power density of 220 W kg?1.  相似文献   

2.
Anode material for lithium-ion battery based on Sn/carbon nanotube (CNT) composite is synthesized via a chemical reduction method. The Sn/CNT composite is characterized by thermogravimetry, X-ray diffraction, and transition electron microscopy. The Sn/CNT composite delivers high initial reversible capacity of 630.5 mAh g?1 and exhibits stable cycling performance with a reversible capacity of 413 mAh g?1 at the 100th cycle. The enhanced electrochemical performance of the Sn/CNT composite could be mainly attributed to the well dispersion of Sn nanoparticles on CNT and partially filling Sn nanoparticles inside the CNT. It is proposed that the chemical treatment of CNT with concentrated nitric acid, which cuts carbon nanotube into short pieces and increases the amount of oxygen-functional groups on the surface, plays an important role in the anchoring of Sn nanoparticles on carbon nanotube and inhibiting the agglomeration of Sn nanoparticles during the charge–discharge process.  相似文献   

3.
3D vertically aligned carbon nanotubes (CNTs)/NiCo2O4 core/shell structures are successfully synthesized as binder‐free anode materials for Li‐ion batteries (LIBs) via a facile electrochemical deposition method followed by subsequent annealing in air. The vertically aligned CNTs/NiCo2O4 core/shell structures are used as binder‐free anode materials for LIBs and exhibit high and stable reversible capacity (1147.6 mAhg?1 at 100 mAg?1), excellent rate capability (712.9 mAh g?1 at 1000 mAg?1), and good cycle stability (no capacity fading over 200 cycles). The improved performance of these LIBs is attributed to the unique 3D vertically aligned CNTs/NiCo2O4 core/shell structures, which support high electron conductivity, fast ion/electron transport in the electrode and at the electrolyte/electrode interface, and accommodate the volume change during cycling. Furthermore, the synthetic strategy presented can be easily extended to fabricate other metal oxides with a controlled core/shell structure, which may be a promising electrode material for high‐performance LIBs.  相似文献   

4.
The Li3V2(PO4)3/reduced graphene oxide (LVP/rGO) composite is successfully synthesized by a conventional solid-state reaction with a high yield of 10 g, which is suitable for large-scale production. Its structure and physicochemical properties are investigated using X-ray diffraction, Raman spectra, field-emission scanning electron microscopy, transmission electron microscopy, and electrochemical methods. The rGO content is as low as ~3 wt%, and LVP particles are strongly adhered to the surface of the rGO layer and/or enwrapped into the rGO sheets, which can facilitate the fast charge transfer within the whole electrode and to the current collector. The galvanostatic charge–discharge tests show that the LVP/rGO electrode delivers an initial discharge capacity of 177 mAh g?1 at 0.5 C with capacity retention of 88 % during the 50th cycle in a wide voltage range of 3.0–4.8 V. A superior rate capability is also achieved, e.g., exhibiting discharge capacities of 137 and 117 mAh g?1 during the 50th cycle at high C rates of 2 and 5 C, respectively.  相似文献   

5.
Graphene‐based phosphorus‐doped carbon (GPC) is prepared through a facile and scalable thermal annealing method by triphenylphosphine and graphite oxide as precursor. The P atoms are successfully doped into few layer graphene with two forms of P–O and P–C bands. The GPC used as anode material for Na‐ion batteries delivers a high charge capacity 284.8 mAh g?1 at a current density of 50 mA g?1 after 60 cycles. Superior cycling performance is also shown at high charge?discharge rate: a stable charge capacity 145.6 mAh g?1 can be achieved at the current density of 500 mA g?1 after 600 cycles. The result demonstrates that the GPC electrode exhibits good electrochemical performance (higher reversible charge capacity, super rate capability, and long‐term cycling stability). The excellent electrochemical performance originated from the large interlayer distance, large amount of defects, vacancies, and active site caused by P atoms doping. The relationship of P atoms doping amount with the Na storage properties is also discussed. This superior sodium storage performance of GPC makes it as a promising alternative anode material for sodium‐ion batteries.  相似文献   

6.
Manganese oxide is a highly promising anode material of lithium‐ion batteries (LIBs) for its low insertion voltage and high reversible capacity. Porous MnO microspheres are prepared by a facile method in this work. As an anode material of LIB, it can deliver a high reversible capacity up to 1234.2 mA h g?1 after 300 cycles at 0.2 C, and a capacity of 690.0 mA h g?1 in the 500th cycle at 2 C. The capacity increase with cycling can be attributed to the growth of reversible polymer/gel‐like film, and the better cycling stability and the superior rate performance can be attributed to the featured structure of the microspheres composed of nanoparticles with a short transport path for lithium ions, a large specific surface, and material/electrolyte contact area. The results suggest that the porous MnO microspheres can function as a promising anode material for high‐performance LIBs.  相似文献   

7.
Recently, germanium (Ge) has been arousing increasing interest as an anode for lithium‐ion batteries (LIBs) and other energy storage devices due to its high theoretical capacity (1600 mAh g?1) and low operating voltage. There are still some critical problems to be solved before Ge can meet the high requirements for practical applications. In this Review, a series of attempts on rational design and synthesis of Ge‐based anode materials during the past few years are summarized. Structural and composition strategies that could resolve the issue of vast volume changes in Ge during cycling and enhance their electrochemical properties are focused on. The main strategies include designing nanostructures and forming Ge‐based composites and Ge‐based alloys. Lastly, the challenges for practical implementation of Ge anodes within the context of current LIB systems are discussed.  相似文献   

8.
Three‐dimensional (3D) multilayer molybdenum disulfide (MoS2)/reduced graphene oxide (RGO) nanocomposites are prepared by a solution‐processed self‐assembly based on the interaction using different sizes of MoS2 and GO nanosheets followed by in situ chemical reduction. 3D multilayer assemblies with MoS2 wrapped by large RGO nanosheets and good interface are observed by transmission electron microscopy. The interaction of Na+ ions with oxygen‐containing groups of GO is also investigated. The measurement of lithium ion batteries (LIBs) shows that MoS2/RGO anode nanocomposite with a weight ratio of MoS2 to GO of 3:1 exhibits an excellent rate performance of 750 mAh g?1 at 3 A g?1 outperforming many previous studies and a high reversible capacity up to ≈1180 mAh g?1 after 80 cycles at 100 mA g?1. Good rate performance and high capacity of MoS2/RGO with 3D unique layered‐structures are attributed to the combined effects of continuous conductive networks of RGO, good interface facilitating charge transfer, and strong RGO sheets preventing the volume expansion. Results indicate that 3D multilayer MoS2/RGO prepared by a facile solution‐processed assembly can be developed to be an excellent nanoarchitecture for high‐performance LIBs.  相似文献   

9.
Rechargeable Li‐O2 batteries are promising candidates for electric vehicles due to their high energy density. However, the current development of Li‐O2 batteries demands highly efficient air cathode catalysts for high capacity, good rate capability, and long cycle life. In this work, a hydrothermal‐calcination method is presented to prepare a composite of Co3O4 hollow nanoparticles and Co organic complexes highly dispersed on N‐doped graphene (Co–NG), which acts as a bifunctional air cathode catalyst to optimize the electrochemical performances of Li‐O2 batteries. Co–NG exhibits an outstanding initial discharge capacity up to 19 133 mAh g?1 at a current density of 200 mA g?1. In addition, the batteries could sustain 71 cycles at a cutoff capacity of 1000 mAh g?1 with low overpotentials at the current density of 200 mA g?1. Co–NG composites are attractive as air cathode catalysts for rechargeable Li‐O2 batteries.  相似文献   

10.
Silicon (Si) shows overwhelming promise as the high-capacity anode material of Li-ion batteries with high energy density. However, Si-based anodes are subjected to a limited electrochemical cycling lifetime due to their large volume change. Herein, a honeycomb-like biomass-derived carbon nanosheet framework is reported to encapsulate Si nanoparticles via a facile molten salt templating method. The carbon framework provides sufficient void space for effectively accommodating the large volume expansion of Si upon Li+ insertion. Moreover, the interconnected carbon skeletons afford fast electron/ion transport pathways for improving the reaction kinetics. Consequently, the porous Si/carbon composite could exhibit a high and stable Li storage capacity of 1022 mAh g−1 at 0.2 A g−1 over 100 cycles along with superior rate capability (555 mAh g−1 at 5 A g−1). This study demonstrates an effective structural design strategy for Si-based anodes toward stable lithium energy storage.  相似文献   

11.
Hollow NiO–carbon hybrid nanoparticle aggregates are fabricated through an environmental template‐free solvothermal alcoholysis route. Controlled hollow structure is achieved by adjusting the ratio of ethylene glycol to water and reaction time of solvothermal alcoholysis. Amorphous carbon can be loaded on the NiO nanoparticles uniformly in the solvothermal alcoholysis process, and the subsequent calcination results in the formation of hollow NiO–C hybrid nanoparticle aggregates. As anode materials for lithium‐ion batteries, it exhibits a stable reversible capacity of 622 mAh g?1, and capacity retention keeps over 90.7% after 100 cycles at constant current density of 200 mA g?1. The NiO–C electrode also exhibits good rate capabilities. The unique hollow structures can shorten the length of Li‐ion diffusion and offer a sufficient void space, which sufficiently alleviates the mechanical stress caused by volume change. The hybrid carbon in the particles renders the electrode having a good electronic conductivity. Here, the hollow NiO‐C hybrid electrode exhibits excellent electrochemical performance.  相似文献   

12.
A novel composite anode material consisted of electrodeposited Cu–Sn alloy dispersing in a conductive micro-porous carbon membrane coated on Cu current collector was investigated. The composite material was prepared by template-like-directed electrodepositing Cu–Sn alloy process and then annealing. The template-like microporous membrane electrode was obtained as follows: (1) casting a polyacrylonitrile (PAN) solution on a copper foil, (2) then immersing the copper foil into deionized water for phase inversion, and (3) drying the membrane electrode. This method provided the composite material with high decentralization of Cu–Sn alloy and supporting medium function of conductive carbon membrane deriving from pyrolysis of PAN. SEM, XRD, and EDS analysis confirmed this structure. The characteristic structure was beneficial to inhibit the aggregation among Cu–Sn microparticles, to relax the volume expansion during cycling, and to improve the cycle ability of electrode. The reversible charge/discharge capacity of the composite material remained more than 426.6 and 445.1 mAh g−1, respectively, after 70 cycles, while that of the electrode prepared by electrodepositing Cu–Sn on a bare Cu foil decreased seriously to only 11.3 mAh g−1. These results show that the novel preparing anode process for LIB is a promising method and can achieve composite materials with larger specific capacity and long cycle life.  相似文献   

13.
One of the key strategies used to obtain high‐rate Li‐ion battery is the reduction of the Li‐ion path length inside the active materials and the enhancement of the ionic diffusion outside the active materials. It is demonstrated that electrochemical performance can be improved significantly at high C‐rates using carbon‐coated spherical aggregates or “supraballs” of randomly packed olivine LiFePO4 (LFP) nanoplates as cathode active materials. 258 nm LFP nanoplates with 30 nm thickness are synthesized through a high‐temperature solvothermal method, in which short lithium‐ion channels are formed perpendicular to the top or bottom planes. These thin nanoplates are formed into carbon‐coated “supraballs” through a spray‐drying and thermal annealing process, in which nanoplates are not stacked but randomly packed due to relatively fast drying. Internal and external nanoplate ion diffusion is therefore enhanced simultaneously due to the optimal molecular crystalline structure and interparticle pore structures of the nanoplates. Indeed, the initial capacity of the carbon‐coated supraballs is 162 mAh g?1 (173.34 mAh cm?3) at 0.1 C and more than 80% is retained (≈130.91 mAh g?1) at 50 C. Furthermore, they offer durable cycling stability (>500 cycles) at 1 C without compromising their capacity.  相似文献   

14.
Inferior rate capability is a big challenge for LiTi2(PO4)3 anode for aqueous lithium-ion batteries. Herein, to address such issue, we synthesized a high-performance LiTi2(PO4)3/carbon/carbon nanotube (LTP/C/CNT) composite by virtue of high-quality carbon coating and incorporation of good conductive network. The as-prepared LTP/C/CNT composite exhibits excellent rate performance with discharge capacity of 80.1 and 59.1 mAh g?1 at 10 C and 20 C (based on the mass of anode, 1 C = 150 mA g?1), much larger than that of the LTP/C composite (53.4 mAh g?1 at 10 C, and 31.7 mAh g?1 at 20 C). LTP/C/CNT also demonstrates outstanding cycling stability with capacity retention of 83.3 % after 1000 cycles at 5 C, superior to LTP/C without incorporation of CNTs (60.1 %). As verified, the excellent electrochemical performance of the LTP/C/CNT composite is attributed to the enhanced electrical conductivity, rapid charge transfer, and Li-ion diffusion because of the incorporation of CNTs.  相似文献   

15.
A peculiar nanostructure of encapsulation of SnO2/Sn nanoparticles into mesoporous carbon nanowires (CNWs) has been successfully fabricated by a facile strategy and confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high‐resolution TEM (HRTEM), X‐ray diffraction (XRD), BET, energy‐dispersive X‐ray (EDX) spectrometer, and X‐ray photoelectron spectroscopy (XPS) characterizations. The 1D mesoporous CNWs effectively accommodate the strain of volume change, prevent the aggregation and pulverization of nanostructured SnO2/Sn, and facilitate electron and ion transport throughout the electrode. Moreover, the void space surrounding SnO2/Sn nanoparticles also provides buffer spaces for the volumetric change of SnO2/Sn during cycling, thus resulting in excellent cycling performance as potential anode materials for lithium‐ion batteries. Even after 499 cycles, a reversible capacity of 949.4 mAh g?1 is retained at 800 mA g?1. Its unique architecture should be responsible for the superior electrochemical performance.  相似文献   

16.
Nanostructured ternary/mixed transition metal oxides have attracted considerable attentions because of their high‐capacity and high‐rate capability in the electrochemical energy storage applications, but facile large‐scale fabrication with desired nanostructures still remains a great challenge. To overcome this, a facile synthesis of porous NiCoO2 nanofibers composed of interconnected nanoparticles via an electrospinning–annealing strategy is reported herein. When examined as anode materials for lithium‐ion batteries, the as‐prepared porous NiCoO2 nanofibers demonstrate superior lithium storage properties, delivering a high discharge capacity of 945 mA h g?1 after 140 cycles at 100 mA g?1 and a high rate capacity of 523 mA h g?1 at 2000 mA g?1. This excellent electrochemical performance could be ascribed to the novel hierarchical nanoparticle‐nanofiber assembly structure, which can not only buffer the volumetric changes upon lithiation/delithiation processes but also provide enlarged surface sites for lithium storage and facilitate the charge/electrolyte diffusion. Notably, a facile synthetic strategy for fabrication of ternary/mixed metal oxides with 1D nanostructures, which is promising for energy‐related applications, is provided.  相似文献   

17.
Fabricating electrode materials with superior electrochemical performance remains a challenge. Here, a simple but effective strategy for the formation of metal oxide nanomaterials with superior performance has been developed. Silk protein nanofibers adhered on reduced graphene oxide (rGO) sheets are used as templates to regulate the formation of nanostructured iron oxide composites, achieving porous nanorod structures that could not be attained in control experiments. These porous nanorods demonstrate superior electrochemical performance as electrodes with retention of a capacity of 1495 mAh g?1 after 180 cycles at 0.2 C and a rate capability of 900 mAh g?1 at 2 C discharge rate. These new rGO/silk composite templates provide a more controllable environment for Fe2O3 fabrication, resulting in improved nanostructures and superior electrical performance. The strategy developed here should also be more broadly applicable in the design of metal oxide nanomaterials with specialized structures and useful performance.  相似文献   

18.
A porous composite anode for lithium ion battery (LIB) was investigated. The composite anode was prepared by electrodepositing Sn?CSb alloy on a template-like electrode and then annealing it in the atmosphere of N2, whereas the porous template-like electrode was obtained by forming a sponge-like porous membrane on a copper foil via a mixed phase inversion process, followed by pre-plating Cu through membrane pores in it. SEM and XRD results showed that composite structure of the anode consisted of electrodeposited Sn?CSb alloy dispersed in a PAN-pyrolyzed conjugated conducting polymer gridding, which was tightly connected with the Cu foil through transition alloy layer formed by heat treatment. Due to its relatively reasonable microcosmic structure, the composite anode presented better cycling performance and specific capacity retention during charging and discharging at diverse rates. When cycled between 0 and 2.0?V (vs Li/Li+) at 0.5?C rate, the reversible charge/discharge capacity of the composite material remained 415 and 414.8?mAh?g?1, respectively, after 30 cycles, corresponding to 82.9% of the capacity retention. When charging and discharging at 2?C rate, the composite material electrode showed 71.7% capacity retention at the 30th cycle.  相似文献   

19.
Electrochemical performance of natural vein graphite as an anode material for the rechargeable Li-ion battery (LIB) was investigated in this study. Natural graphite exhibits many favorable characteristics such as, high reversible capacity, appropriate potential profile, and comparatively low cost, to be an anode material for the LIB. Among the natural graphite varieties, the vein graphite typically possesses very high crystallinity together with extensively high natural purity, which in turn reduces the cost for purification. The developed natural vein graphite variety used for this study, possessed extra high purity with modified surface characteristics. Half-cell testing was carried out using CR 2032 coin cells with natural vein graphite as the active material and 1 M LiPF6 (EC: DMC; vol. 1:1) as the electrolyte. Galvanostatic charge–discharge, cyclic voltammetry, and impedance analysis revealed a high and stable reversible capacity of 378 mA h g?1, which is higher than the theoretical capacity (372 mA h g?1 for LiC6). Further, the observed low irreversible capacity acquiesces to the high columbic efficiency of over 99.9%. Therefore, this highly crystalline developed natural vein graphite can be presented as a readily usable low-cost anode material for Li-ion rechargeable batteries.  相似文献   

20.
Porous hollow metal oxides derived from nanoscaled metal-organic framework (MOF) have drawn tremendous attention due to their high electrochemical performance in advanced Li-ion batteries (LIBs). In this work, porous NiO hollow quasi-nanospheres were fabricated by an ordinary refluxing reaction combination of a thermal decomposition of new nanostructured Ni-MOF, i.e., {Ni3(HCOO)6·DMF}n. When evaluated as an anode material for lithium ion batteries, the MOF derived NiO electrode exhibits high capacity, good cycling stability and rate performance (760 mAh g?1 at 200 mA g?1 after 100 cycles, 392 mAh g?1 at 3200 mA g?1). This superior lithium storage performance is mainly attributed to the unique hollow and porous nanostructure of the as-synthesized NiO, which offer enough space to accommodate the dramstic volume change and alleviate the pulverization problem during the repeated lithiation/delithiation processes, and provide more electro-active sites for fast electrochemical reactions as well as promote lithium ions and electrons transfer at the electrolyte/electrode interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号