首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 744 毫秒
1.
In this work, the pressure induced phase transition of InAs is investigated by density functional theory. The first-order phase transition of InAs from zinc-blende (ZB) to the rocksalt (RS) structure occurs at 4.9 GPa accompanies by a 26% volume collapse. It is found that the nearest In and As atoms bonded as covalent bond, but there is no strong interaction between the nearest In–In or As–As atoms. Crystal space of ZB structure is occupied by tetrahedrons (4 In–As covalent bonds) partly with many interstice, and crystal space of RS is fulfilled by close-packed octahedrons (6 In–As covalent bonds). With increasing pressure, rebuild of covalent bond due to variations of electronic structure causes phase transition from ZB to RS structure. Furthermore, directional changes of covalent bond along [100] and [110] bring evident variation of shear on the {100} and {110} planes.  相似文献   

2.
The surface reconstructions on InAs(111)A wetting layer grown on GaAs substrate are investigated by our ab initio-based approach incorporating the chemical potentials of In atom and As molecules in the vapor phase as functions of temperature and beam equivalent pressure. The calculated results imply that the most stable surface structure of InAs with/without lattice constraint from the substrate is the In-vacancy surface under conventional growth conditions. The In-vacancy surface is dramatically stabilized on the wetting layer, since the atoms around the In-vacancy are easily displaced to effectively lower the strain energy due to the lattice constraint from the GaAs substrate. Distinctive feature between InAs(111)A surfaces with and without lattice constraint is found in the stable adsorption sites. In adatoms favor the In-vacancy site on the InAs without lattice constraint in contrast to the interstitial sites on the InAs wetting layer. These results suggest that the surface structure and adsorption-desorption behavior on the wetting layer are crucial for investigating the growth processes of nanostructures such as quantum dots and stacking fault tetrahedrons.  相似文献   

3.
We present an extended study of single impurity atoms at the interface between the half-metallic ferromagnetic zinc-blende CrAs compound and the zinc-blende binary InAs and CdSe semiconductors in the form of very thin multilayers. Contrary to the case of impurities in the perfect bulk CrAs studied in Galanakis and Pouliasis [J. Magn. Magn. Mater. 321 (2009) 1084] defects at the interfaces do not alter in general the half-metallic character of the perfect systems. The only exception are Void impurities at Cr or In(Cd) sites which lead, due to the lower-dimensionality of the interfaces with respect to the bulk CrAs, to a shift of the p bands of the nearest neighboring As(Se) atom to higher energies and thus to the loss of the half-metallicity. But Void impurities are Schottky-type and should exhibit high formation energies and thus we expect the interfaces in the case of thin multilayers to exhibit a robust half-metallic character.  相似文献   

4.
An efficient mechanical and electronic axial approximation of the strained 8 × 8 Hamiltonian is proposed for zinc-blende nanostructures with a cylindrical shape on (100) substrates. Vertically stacked InAs/InP columnar quantum dots (CQDs) for polarization insensitive semiconductor optical amplifier (SOA) in telecommunications applications are studied theoretically. Non-radiative Auger processes in InAs/InP quantum dots (QDs) are also investigated. It is shown that a multiband approach is necessary in both cases.  相似文献   

5.
We have studied the formation of a Bi-induced (2 × 2) reconstruction on the InAs(111)B surface. In connection to the development of the (2 × 2) reconstruction, a two dimensional charge accumulation layer located at the bottom of the InAs conduction band appears as seen through a photoemission structure at the Fermi level. Not well ordered Bi layers do not induce a charge accumulation. The Bi-induced reconstruction reduces the polarization of the pristine surface and changes the initial charge distribution. InAsBi alloying occurs below the surface where Bi acts as charge donor leading to the charge accumulation layer.  相似文献   

6.
Band structures, density of states, dielectric and vibrational properties of XAs (X=Al, Ga and In) alloys with zinc-blende structure have been studied using the density functional theory (DFT). The calculated lattice constants, band gap, static dielectric constants and phonon frequencies are all in good agreement with the available experimental data and other theoretical results. The calculated results show that Born effective charges ZB increase with cation mass. A similar tendency has been observed for phonon frequencies ωTO and ωLO. Calculation results prove that static dielectric constants ε(0) increase with atomic weight, i.e. in the sequences AlAs–GaAs–InAs, and show an inverse sequence for band gap.  相似文献   

7.
The electronic structure and chemical bond of zinc-blende (zb) MnTe have been studied by using total-electron-yield (TEY) X-ray absorption near-edge structure (XANES) spectroscopy. Close resemblances of the shape of Mn K-edge XANES in zb-MnTe and in Zn1−xMnxTe [A. Titov, X. Biquard, D. Halley, S. Kuroda, E. Bellet-Amalric, H. Mariette, J. Cibert, A.E. Merad, G. Merad, M.B. Kanoun, E. Kulatov, Yu.A. Uspenskii, Phys. Rev. B 72 (2005) 115209] indicated predominant influence of the 1st coordination shell. In particular, identical single-peak pre-edge structure for both cases was mainly ascribed to the Mn 1s-3d/4p weakly allowed dipole transitions. The quantitative analysis of XANES in zb-MnTe concerned the observed chemical shift of Mn K-edge threshold energy and a magnitude of the relevant cation-anion charge transfer (or effective cation charge), q(Mn-Te) [calculated after M. Kitamura, H. Chen, J. Phys. Chem. Solids 52 (1991) 731]. It also provided a comparison with our earlier X-ray absorption studies of Zn1−xMnxB alloys (B = S, Se). The estimated charge transfer within the chemical bond of zb-MnTe enabled us to complete the q(Mn-B) versus chalcogen ligand (B = S, Se, Te) dependence and to interpret it in terms of p-d hybridization and a contribution of Mn 3d electrons to the overall charge transfer.  相似文献   

8.
The optical and electronic properties of (GaAs)n/(InAs)n superlattices are calculated by means of LMTO-ASA method. The too small band gap problem of bulk material and superlattices is corrected by adding to the effective potentials an additional external potential that is sharply peaked at the atomic sites. The results show that the optical properties of GaAs/InAs(001) superlattices are about average of that of two bulks of GaAs and InAs.  相似文献   

9.
By a combination of prepatterned substrate and self-organized growth, InAs islands are grown on the stripe-patterned GaAs (100) substrate by solid-source molecular beam epitaxy. It is found that the InAs quantum dots can be formed either on the ridge or on the sidewall of the stripes near the bottom, depending on the structure of the stripes on the patterned substrate or molecular beam epitaxy growth conditions. When a InxGa1−xAs strained layer is grown first before InAs deposition, almost all the InAs quantum dots are deposited at the edges of the top ridge. And when the InAs deposition amount is larger, a quasi-quantum wire structure is found. The optical properties of the InAs dots on the patterned substrate are also investigated by photoluminescence.  相似文献   

10.
Dependencies of electronic structure and lattice properties of InN with zinc-blende structure on hydrostatic pressure are presented based on band structures computed using the empirical pseudopotential method. The pressure behavior of the pseudopotential form factors have been analyzed. The effect of pressure on the density of states has been examined. Trends in bonding and ionicity under pressure are also discussed. Our results show as well that the absolute value of the Fourier transform of the valence charge density might be useful in the prediction of the phase transition in zinc-blende materials. Received 25 May 2001 and Received in final form 16 January 2002  相似文献   

11.
From an empirical calculation of bond energy, of semiconductors of diamond and zinc-blende structures, and of some wurtzite-type, it is revealed that between the gap energy Eg and single-bond energy Es there exists a linear correlation which, for the different series of binary semiconductors of tetrahedral coordination taken into consideration here, can be expressed by a relation of the type : Eg = a(Esb) where a and b are characteristic constants of the series AivAiv, AiiiBv,AiiBvi. The correlation found for the said semiconductors are not valid for the compounds AiBvii of zinc-blende type structure and for the two oxides ZnO, CdO of wurtzite-type structure. This fact is attributed to the almost completely ionic character of the bond in these compounds, because of which the localization of the electrons along the valence bonds is negligible.  相似文献   

12.
In order to clarify the electronic properties of the ternary compound semiconductor GaPN, in a zinc-blende structure, a simple pseudopotential scheme (EPM), within an effective potential (VCA), is proposed. The effects of disorder and spin–orbit coupling are neglected. Various quantities, such as energy levels, charge densities, ionicity character, transverse effective charge, and refractive index are obtained for this alloy. Moreover, the crossover of the direct and indirect band gaps is predicted.  相似文献   

13.
The influence of the Dresselhaus spin-orbit coupling on spin polarization by tunneling through a disordered semiconductor superlattice was investigated. The Dresselhaus spin-orbit coupling causes the spin polarization of the electron due to transmission possibilities difference between spin up and spin down electrons. The electron tunneling through a zinc-blende semiconductor superlattice with InAs and GaAs layers and two variable distance InxGa(1−x)As impurity layers was studied. One hundred percent spin polarization was obtained by optimizing the distance between two impurity layers and impurity percent in disordered layers in the presence of Dresselhaus spin-orbit coupling. In addition, the electron transmission probability through the mentioned superlattice is too much near to one and an efficient spin filtering was recommended.  相似文献   

14.
In order to clarify the electronic and optical properties of wide-energy gap zinc-blende structures ZnSe, MgSe and their alloys (ZnSe)1  x(MgSe)x, a simple pseudo-potential scheme (EPM) within an effective potential, the virtual crystal approximation (VCA) which incorporates compositional disorder as an effective potential, is presented. Various quantities, including the fundamental band gap, the energies of several optical gaps, charge densities, ionicity character, transverse effective charge, and refractive index are obtained for this alloy.  相似文献   

15.
Single quantum dots (QDs) have great potential as building blocks for quantum information processing devices. However, one of the major difficulties in the fabrication of such devices is the placement of a single dot at a pre-determined position in the device structure, for example, in the centre of a photonic cavity. In this article we review some recent investigations in the site-controlled growth of InAs QDs on GaAs by molecular beam epitaxy. The method we use is ex-situ patterning of the GaAs substrate by electron beam lithography and conventional wet or dry etching techniques to form shallow pits in the surface which then determine the nucleation site of an InAs dot. This method is easily scalable and can be incorporated with marker structures to enable simple post-growth lithographic alignment of devices to each site-controlled dot. We demonstrate good site-control for arrays with up to 10 micron spacing between patterned sites, with no dots nucleating between the sites. We discuss the mechanism and the effect of pattern size, InAs deposition amount and growth conditions on this site-control method. Finally we discuss the photoluminescence from these dots and highlight the remaining challenges for this technique. To cite this article: P. Atkinson et al., C. R. Physique 9 (2008).  相似文献   

16.
耶红刚  陈光德  竹有章  吕惠民 《中国物理》2007,16(12):3803-3908
In the framework of density functional theory, using the plane-wave pseudopotential method, the nitrogen vacancy ($V_{\rm N})$ in both wurtzite and zinc-blende AlN is studied by the supercell approach. The atom configuration, density of states, and formation energies of various charge states are calculated. Two defect states are introduced by the defect, which are a doubly occupied single state above the valance band maximum (VBM) and a singly occupied triple state below the conduction band minimum (CBM) for wurtzite AlN and above the CBM for zinc-blende AlN. So $V_{\rm N}$ acts as a deep donor in wurtzite AlN and a shallow donor in zinc-blende AlN. A thermodynamic transition level $E({3 + } \mathord{\left/ {\vphantom {{3 + } + }} \right. \kern-\nulldelimiterspace} + )$ with very low formation energy appears at 0.7 and 0.6eV above the VBM in wurtzite and zinc-blende structure respectively, which may have a wide shift to the low energy side if atoms surrounding the defect are not fully relaxed. Several other transition levels appear in the upper part of the bandgap. The number of these levels decreases with the structure relaxation. However, these levels are unimportant to AlN properties because of their high formation energy.  相似文献   

17.
Local structure of Mn atoms in Ga1−xMnxAs epilayers was studied using the X-ray absorption fine structure (XAFS) at Mn K-edge. X-ray near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) techniques were used. XAFS spectra for different Mn sites has been calculated and compared with the experimental data. Multi-parameter fitting of the EXAFS data indicates that 15-25% of Mn atoms are in interstitial sites in the as grown films. The Mn-As bond length has been found longer than Ga-As bond length in GaAs for both substitutional (MnGa) and interstitial (MnI) sites.  相似文献   

18.
CdS multiplings having more than three prisms were developed from the vapor generated from CdS powder by means of the conically converging shock-wave (CCSW) technique utilizing detonation of explosive charge. These multilings are mainly made up of the wurtzite type prisms extending parallel to the 111 directions of the zinc-blende type octahedral crystallite at the center of the particle. Only a few multilings consist of prisms having the zinc-blende structure. Their morphology and structure are discussed.  相似文献   

19.
We report local density functional calculations using the full potential linear muffin-tin orbital (FP-LMTO) method for binary platinum nitride (PtN), in five different crystal structures, the rock salt (B1), zinc-blende (B3), wurtzite (B4), nickel arsenide (B8), and PbS (B10) phases. The ground state properties such as the equilibrium lattice constant, elastic constants, the bulk modulus and its pressure derivative of PtN in these phases are determined and compared with the other available experimental and theoretical works.Our calculations confirm in the B3 structure that PtN is found to be mechanically stable with a large bulk modulus B=232.45 GPa and at a sufficiently high pressure the B81 structure would be favoured.The theoretical transition pressure from zinc blende (B3) to NiAs (B81), zinc-blende (B3) to rock-salt (B1) and zinc-blende (B3) to PbO (B10) is determined to be 9.10 GPa, 9.85 GPa and 69.35 GPa, respectively. Our calculation shows also in five different structures for PtN a high bulk modulus is a good indicator of a hard material.  相似文献   

20.
Magnetic and electronic structure calculations are carried out for hypothetical zinc-blende (zb) phase of FeX (X=P, As, Sb) by using the full-potential linearized augmented plane wave (FLAPW) method. For zb FeSb, the total energy has been calculated as a function of lattice constant in ferromagnetic (FM) and antiferromagnetic (AFM) states. We found that the ground state of zb FeSb is very stable with respect to compression and expansion of the unit cell. The magnetic moment of zb FeSb in the AFM state is increasing with the lattice constant. The magnetic and electronic structures calculations of FeAs (FeP) are carried out for the lattice constants of GaAs (GaP), InAs (InP), and Si. Our finding shows that AFM is the ground state for all of our calculated zb FeX compounds and do not belong to the class of zb half metallic ferromagnets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号