首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We report local density-functional calculations using the full-potential linearized muffin-tin orbital method (FP-LMTO) for platinum carbide (PtC) in the, rock-salt (B1), zinc-blende (B3), wurtzite (B4), nickel-arsenide (B8) and PbO (B10) structures. The ground state properties such as the equilibrium lattice constant, elastic constants, the bulk modulus and its pressure derivative of PtC in these phases are determined and compared with available experimental and theoretical data.Our calculations show that the ground state phase of PtC to be zinc-blende (B3) structure at zero pressure and the nickel-arsenide (B8) structure is a high-pressure phase. The transition pressures at which this compound undergoes the structural phase transition from (B3) to (B8) and from (B3) to (B1) are found to be 34.25 and 51.28 GPa, respectively. The highest bulk modulus values in the nickel-arsenide (B8), zinc-blende (B3), rock-salt (B1) and PbO (B10) structures indicate that PtC is a hard material.  相似文献   

2.
We present in this paper the results of an ab initio theoretical study within the local density approximation (LDA) to determine in rock-salt (B1), cesium chloride (B2), zinc-blende (B3), and tungsten carbide (WC) type structures, the structural, elastic constants, hardness properties and high-pressure phase of the noble metal carbide of ruthenium carbide (RuC).The ground state properties such as the equilibrium lattice constant, elastic constant, the bulk modulus, its pressure derivative, and the hardness in the four phases are determined and compared with available theoretical data. Only for the three phases B1, B3, and WC, is the RuC mechanically stable, while in the B2 phase it is unstable, but in B3 RuC is the most energetically favourable phase with the bulk modulus 263 GPa, and at sufficiently high pressure (Pt=19.2 GPa) the tungsten carbide (WC) structure would be favoured, where ReC-WC is meta-stable.The highest bulk modulus values in the B3, B2, and WC structures and the hardnesses of H(B3)=36.94 GPa, H(B1)=25.21 GPa, and H(WC)=25.30 GPa indicate that the RuC compound is a superhard material in B3, and is not superhard in B1 and WC structures compared with the H(diamond)=96 GPa.  相似文献   

3.
The structural phase transformations of the PtN compound with a 1:1 stoichiometric ratio of Pt:N were investigated using the framework of density functional theory (DFT). The full potential linearized augmented plane wave (FP-LAPW) method within the generalized gradient (PBE-GGA) and the Engel–Vosko generalized gradient (EV-GGA) approximations were used. A comparative study of the experimental and theoretical results is provided on the structural properties of zinc-blende (ZB), rock-salt (RS), cesium chloride (CsCl), wurtzite (WZ), nickel arsenide (NiAs), lead monoxide (PbO), and tungsten carbide (WC) phases. The calculated band structure using the modified version of the Becke and Johnson (mBJ) exchange potential reveals the metallic character of the PtN compound. The present study also shows that the PtN compound crystallizes in the WZ phase under ambient conditions. The theoretical transition pressures from WZ to RS, NiAs, PbO, and CsCl transformations are found to be 9.441 GPa, 7.705 GPa, 18.345 GPa and 31.9 GPa, respectively, using the PBE-GGA method.  相似文献   

4.
The structural phase transition, elastic, thermodynamics properties of BeSe in zinc-blende were investigated by performing first-principles calculations within generalized gradient approximation. The phase transition pressure Pt between the B3 phase and the B8 phase of BeSe was determined. The pressure dependencies of elastic constants, shear modulus, Young's modulus, and Poisson's ratio of BeSe are calculated. The thermodynamic properties of the zinc-blende structure BeSe are calculated by using the quasi-harmonic Debye model. The pressure and temperature dependencies of the heat capacity and the thermal expansion coefficient, as well as the Grüneisen parameter are investigated systematically in the ranges of 0–50 GPa and 0–1200 K.  相似文献   

5.
Ab initio calculations, based on norm-conserving nonlocal pseudopotentials and density functional theory (DFT), are performed to investigate the structural, elastic, dielectric, and vibrational properties of aluminum arsenide AlAs with zinc-blende (B3) structure and nickel arsenide (B81) structure under hydrostatic pressure. Firstly, the path for the phase transition from B3 to B81 is confirmed by analyzing the energies of different structures, which is in good agreement with previous theoretical results. Secondly, we find that the elastic constants, bulk modulus, static dielectric constants, and the optical phonon frequencies are varying in a nearly linear manner under hydrostatic pressure. What is more, the softening mode of transversal acoustic mode at X point supports the phase transition in AlAs.  相似文献   

6.
The crystal structure of AgSbTe2 has been refined using first-principles calculations, from which the ordering of the cations, Ag and Sb, was confirmed. The spontaneous formation of two (D4 and L11) phases at ambient and elevated pressure was demonstrated theoretically. The compound was also prepared and its high-pressure structural deformation sequence, ranging from ambient to 50.9 GPa, was observed with synchrotron radiation at room temperature. The compound underwent a pressure-induced amorphization (PIA) at 24.6 GPa and then started recrystallizing at 49.2 GPa. The bulk modulus (B0) and pressure derivative of the bulk modulus (Bp) were determined experimentally to be 56.3 ± 5.1 GPa and 4.3 ± 0.8, respectively. We suggest that large displacements of Te atoms to Ag vacancy positions are responsible for PIA and the recrystallization.  相似文献   

7.
The structural, electronic and mechanical properties of alkaline earth metal oxides MO (M=Be, Mg, Ca, Sr, Ba) in the cubic (B1, B2 and B3) phases and in the wurtzite (B4) phase are investigated using density functional theory calculations as implemented in VASP code. The lattice constants, cohesive energy, bulk modulus, band structures and the density of states are computed. The calculated lattice parameters are in good agreement with the experimental and the other available theoretical results. Electronic structure reveals that all the five alkaline earth metal oxides exhibit semiconducting behavior at zero pressure. The estimated band gaps for the stable wurtzite phase of BeO is 7.2 eV and for the stable cubic NaCl phases of MgO, CaO, SrO and BaO are 4.436 eV, 4.166 eV, 4.013 eV, and 2.274 eV respectively. A pressure induced structural phase transition occurs from wurtzite (B4) to NaCl (B1) phase in BeO at 112.1 GPa and from NaCl (B1) to CsCl (B2) phase in MgO at 514.9 GPa, in CaO at 61.3 GPa, in SrO at 42 GPa and in BaO at 14.5 GPa. The elastic constants are computed at zero and elevated pressures for the B4 and B1 phases for BeO and for the B1 and B2 phases in the case of the other oxides in order to investigate their mechanical stability, anisotropy and hardness. The sound velocities and the Debye temperatures are calculated for all the oxides using the computed elastic constants.  相似文献   

8.
A theoretical study of the structural, elastic and thermodynamic properties of the cubic zinc-blende (ZB) structure InN are presented in this paper by performing first principles calculations within local density approximation. The values of lattice constant, bulk modulus and its pressure derivatives and elastic constants are in excellent agreement with the available experimental data and other theoretical results. It is found that the ZB structure InN should be unstable above 20 GPa mechanically. The pressure and temperature dependencies of the bulk modulus, the heat capacity and the thermal expansion coefficient and the entropy S, as well as the Grüneisen parameter are obtained by the quasi-harmonic Debye model in the ranges of 0-1500 K and 0-25 GPa.  相似文献   

9.
The ambient temperature equation of state (EoS) of technetium metal has been measured by X-ray diffraction. The metal was compressed using a diamond anvil cell and using a 4:1 methanol-ethanol pressure transmitting medium. The maximum pressure achieved, as determined from the gold pressureEquation of state for technetium from X-ray diffraction and first-principle calculations scale, was 67 GPa. The compression data shows that the HCP phase of technetium is stable up to 67 GPa. The compression curve of technetium was also calculated using first-principles total-energy calculations. Utilizing a number of fitting strategies to compare the experimental and theoretical data it is determined that the Vinet equation of state with an ambient isothermal bulk modulus of B0T=288 GPa and a first pressure derivative of B′=5.9(2) best represent the compression behavior of technetium metal.  相似文献   

10.
X-ray diffraction studies on bulk yttrium trihydride, in a diamond anvil cell, have been carried out up to 25 GPa. Pressure induced hexagonal-to-cubic phase transformation in YH3 has been found at pressure of about 8 GPa. The lattice parameter of the new cubic phase was determined as equal to 5.28 Å. This finding confirms the theoretical predictions based on first principle calculations of such a transformation. Equations of state have been determined for both the hexagonal hcp and cubic fcc YH3 phases. As compared to the pure yttrium metal, bulk modulus for YH3 is about four times bigger. The similarity of this transition to that observed in the other 4-f trivalent hydrides has been discussed.  相似文献   

11.
The elastic and thermodynamic characteristics of OsC crystal have been predicted through a method of density functional theory within the generalized gradient approximation (GGA). Compared with WC-type OsC, NaCl-type OsC is not only energy unfavorable but also mechanics unstable. The five independent elastic constants (Cij), bulk modulus (B0), the dependence of bulk modulus on temperature and pressure as well as the thermal expansion coefficient (αV) at various temperatures for WC-type OsC are discussed. According to our calculations, WC-type OsC should be an ultra-incompressible material with high bulk modulus about 381 GPa. In addition, the bulk modulus will increase with increasing pressure while decrease with increasing temperature. The researches on the thermal expansion coefficient indicate that there will be a knee point during the process of thermal expansion coefficient variation versus increasing temperature. Our results may provide useful information for theoretical and experimental investigation of OsC.  相似文献   

12.
Powder x-ray diffraction experiments and first-principles calculations have been carried out to investigate the possibility of a structural phase transition, characterized by a change from ionic to covalent bonding, in strontium hydride at pressures greater than 50 GPa. The powder x-ray diffraction results confirm a previously reported transition from the cotunnite structure to the Ni2In structure at approximately 8 GPa. The Ni2In phase remained stable up to the maximum experimental pressure of 113 GPa. The first-principles calculations, however, predict that under hydrostatic conditions a transition from the Ni2In structure to the AlB2 structure will occur at 115 GPa. A comparison of the pressure-dependent volume yielded by the respective experimental and theoretical studies suggests that in many cases the bulk modulus obtained from experiments carried out under non-hydrostatic conditions may be overestimated. Raman spectroscopy experiments corroborated the previously proposed Ni2In structure, as the spectra obtained at pressures greater than 8 GPa exhibited two Raman-active modes, consistent with those expected from the Ni2In structure.  相似文献   

13.
A detailed theoretical study of the isothermal and adiabatic bulk moduli of MgF2 with a fluorite structure under high pressure and temperature has been carried out by means of first-principles density functional theory calculations combined with the quasi-harmonic Debye model in which the phononic effects are considered. Particular attention is paid to the prediction of the isothermal bulk modulus and its first and second pressure derivatives for the first time. The calculated ground state properties agree well with other theoretical values. At extended pressure and temperature ranges, the variation of the bulk modulus which plays a central role in the formulation of approximate equations of state has also been predicted. The properties of MgF2 with a fluorite structure are summarized in the pressure range of 0–135 GPa and the temperature up to melting temperature 1500 K.  相似文献   

14.
We report here high-pressure x-ray diffraction (XRD) studies on tellurium (Te) at room temperature up to 40 GPa in the diamond anvil cell (DAC). The XRD measurements clearly indicate a sequence of pressure-induced phase transitions with increasing pressure. The data obtained in the pressure range 1 bar to 40 GPa fit five different crystalline phases out of Te: hexagonal Te (I) → monoclinic Te(II) → orthorhombic Te (III) → Β-Po-type Te(IV) → body-centered-cubic Te(V) at 4, 6.2, 11 and 27 GPa, respectively. The volume changes across these transitions are 10%, 1.5%, 0.3% and 0.5%, respectively. Self consistent electronic band structure calculations both for ambient and high pressure phases have been carried out using the tight binding linear muffin tin orbital (TB-LMTO) method within the atomic-sphere approximation (ASA). Reported here apart from the energy band calculations are the density of states (DOS), Fermi energy (E f) at various high-pressure phases. Our calculations show that the ambient pressure hexagonal phase has a band gap of 0.42 eV whereas high-pressure phases are found to be metallic. We also found that the pressure induced semiconducting to metallic transition occurs at about 4 GPa which corresponds to the hexagonal phase to monoclinic phase transition. Equation of state and bulk modulus of different high-pressure phases have also been discussed.  相似文献   

15.
The ground-state properties of ZnO in the rock-salt (B1), CsCl (B2), zinc-blende (B3), wurtzite (B4), cinnabar, cmcm, d-β-tin, NiAs, Immm, and Imm2 structures were investigated using an accurate first-principles total-energy calculations based on the full-potential augmented plane-wave plus local orbitals (APW+lo) method. The local density approximation was used for the exchange and correlation energy density functional. The ground state properties such as lattice parameter, bulk modulus and its pressure derivative as well as the structural phase stability were calculated and compared to the available experimental data and previous theoretical works.  相似文献   

16.
In this work primarily structural parameters of the Y3Al2 was optimized. In the calculations, PBE type Exchange-Correlation function was selected in the GGA approximation and ultra-soft pseudopotential was used. Crystalline lattice parameters a = 15.581 Bohr, c / a = 0.923. Total energy was calculated by small deformations in volume. These values were fitted to the equation of state and the bulk modulus was calculated as 58.4 GPa. The working structure has elastic constants as C11, C12, C13, C33, C44 and C66. These constants have been calculated under ambient pressure. Using the elastic constants, bulk, shear, Young modulus and Poisson ratio (in Voigt approach) were obtained as 58.12, 34.31, 86.01 GPa and 0.25, respectively. Melting temperature of the material was guessed from the elastic constant. The results were compared with the current experimental and theoretical data.  相似文献   

17.
We present the results of our calculations on Boron antimony (BSb) compound in zinc-blende (ZB) and rock-salt (RS) structures by performing ab initio calculations within the local density approximation (LDA). Some basic physical properties, such as lattice constant, bulk modulus, cohesive energy, phase transition pressure, second-order elastic constants (Cij), phonon frequencies, and some band structural parameters are calculated and compared with those obtained with other recent theoretical works. In order to further understand the behaviour of BSb compound, we have also predicted, the pressure-dependent behaviours of the band gap, second-order elastic constants (Cij), Young's modulus, poison ratios (ν), Anizotropy factor (A), sound velocities, and Debye temperature for this hypothetical compound.  相似文献   

18.
Recently, Chandra Shekar et al. (Phys. Stat. Sol. B 241(2004)2893), studied the structural stability of CeGa2 under high pressure up to ∼32 GPa and reported a structural transition from hexagonal AlB2-type to omega trigonal-type starting at ∼16 GPa with a volume collapse of ∼6%. The high-pressure omega triginal phase is found to coexist with the parent phase up to 32 GPa. In this paper, we report the results of our band structure calculations on this system as a function of reduced volume by the tight-binding linear muffin–tin orbital (TB-LMTO) method, in order to look into this structural transition and to understand it in terms of changes in its electronic structure. Our calculations indicate a structural transition at ∼30.6 GPa with a volume collapse of 3.5%, in good agreement with the experimental results. The possible mechanism of the phase transition may be due to f→d electron transfer under pressure. The theoretically calculated ground-state properties, namely the lattice parameters and the bulk modulus are also in good agreement with the experimental values.  相似文献   

19.
We study the pressure-induced phase transition of wurtzite ZnS using a constant pressure ab initio technique. A first-order phase transition into a rocksalt state at 30–35 GPa is observed in the constant pressure simulation. We also investigate the stability of wurtzite (WZ) and zinc-blende (ZB) phases from energy–volume calculations and Gibbs free energies at zero temperature and find that both structures show nearly similar equations of state and transform into a rocksalt structure around 14 GPa, in agreement with experiments. Additionally, we examine the influence of pressure on the electronic structure of the wurtzite and zinc-blende ZnS crystals and find that their band gap energies exhibit similar tendency and increase with increasing pressure. The calculated pressure coefficients and deformation potential are found to be comparable with experiments.  相似文献   

20.
We employ state-of-the-art ab initio density functional theory techniques to investigatethe structural, dynamical, mechanical stability and electronic properties of the ternaryAgInS2 compoundsunder pressure. Using cohesive energy and enthalpy, we found that from the six potentialphases explored, the chalcopyrite and the orthorhombic structures were very competitive aszero pressure phases. A pressure-induced phase transition occurs around 1.78 GPa from the low pressure chalcopyritephase to a rhombohedral RH-AgInS2 phase. The pressure phase transition around 1.78 GPa isaccompanied by notable changes in the volume and bulk modulus. The calculations of thephonon dispersions and elastic constants at different pressures showed that thechalcopyrite and the orthorhombic structures remained stable at all the selected pressure(0, 1.78 and 2.5 GPa), where detailed calculations were performed, while the rhombohedralstructure is only stable from the transition pressure 1.78 GPa. Pressure effect on thebandgap is minimal due to the small range of pressure considered in this study. Themeta-GGA MBJ functional predicts bandgaps which are in good agreement with availableexperimental values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号