首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous infrared studies on the hole-doped manganite La0.67Sr0.33MnO3 (LSMO) have analysed its charge dynamics in terms of one type of charge carrier despite evidence of both electron and hole Fermi surfaces. Here, we investigate the charge dynamics of an LSMO film with infrared and optical spectroscopy in order to provide a complete picture of metallic conduction. In the ferromagnetic metallic phase, the low-frequency optical conductivity is best explained by a two-carrier model comprising electrons and holes. The number densities, effective masses and relaxation response of the delocalized electrons and holes are quantified. We discover that only one-third of the doped charges are coherent and contribute to the dc transport. Metallic LSMO cannot be classified as a bad metal at low temperatures because the mean free path of the coherent, mobile charge carriers exceeds the Ioffe–Regel–Mott limit. The incoherent spectral response of the doped charges manifests itself as a broad mid-infrared feature. We also report the first observation of splitting of an infrared-active phonon due to local Jahn–Teller distortion in the vicinity of the thermally driven transition to the nonmetallic, paramagnetic phase in LSMO. This demonstrates that infrared spectroscopy is capable of detecting the presence of local lattice distortions in correlated electron systems.  相似文献   

2.
The origination of ill-defined layer in organic spin valves was investigated by using atomic force microscopy (AFM) and Rutherford backscattering (RBS) analysis. It was found that conductive bulges of LSMO film and self-grown pinholes in Alq3 film other than Co inclusions could lead to the formation of ill-defined layer. The morphology of LSMO substrate had a strong influence on that of Alq3 film, LSMO/Alq3 and Alq3/Co interfaces. Moreover, Alq3 film with the thickness of 1-4 nm could be barriers which was explained by small active area and added insulated layer in organic magnetic tunnel junctions.  相似文献   

3.
Epitaxial La1−xSrxMnO3 (LSMO) films were prepared by excimer laser-assisted metal organic deposition (ELAMOD) at a low temperature using ArF, KrF, and XeCl excimer lasers. Cross-section transmission electron microscopy (XTEM) observations confirmed the epitaxial growth and homogeneity of the LSMO film on a SrTiO3 (STO) substrate, which was prepared using ArF, KrF, and XeCl excimer lasers. It was found that uniform epitaxial films could be grown at 500 °C by laser irradiation. When an XeCl laser was used, an epitaxial film was formed on the STO substrate at a fluence range from 80 to 140 mJ/cm2 of the laser fluence for the epitaxial growth of LSMO film on STO substrate was changed. When the LaAlO3 (LAO) substrate was used, an epitaxial film was only obtained by ArF laser irradiation, and no epitaxial film was obtained using the KrF and XeCl lasers. When the back of the amorphous LSMO film on an LAO substrate was irradiated using a KrF laser, no epitaxial film formed. Based on the effect of the wavelength and substrate material on the epitaxial growth, formation of the epitaxial film would be found to be photo thermal reaction and photochemical reaction. The maximum temperature coefficient of resistance (TCR) of the epitaxial La0.8Sr0.2MnO3 film on an STO substrate grown using an XeCl laser is 4.0%/K at 275 K. XeCl lasers that deliver stabilized pulse energies can be used to prepare LSMO films with good a TCR.  相似文献   

4.
The electrical and magnetic characteristics of La0.7Sr0.3MnO3 (LSMO) epitaxial manganite films are investigated by different methods under conditions when the crystal structure is strongly strained as a result of mismatch between the lattice parameters of the LSMO crystal and the substrate. Substrates with lattice parameters larger and smaller than the nominal lattice parameter of the LSMO crystal are used in experiments. It is shown that the behavior of the temperature dependence of the electrical resistance for the films in the low-temperature range does not depend on the strain of the film and agrees well with the results obtained from the calculations with allowance made for the interaction of electrons with magnetic excitations in the framework of the double-exchange model for systems with strongly correlated electronic states. Investigations of the magneto- optical Kerr effect have revealed that an insignificant (0.3%) orthorhombic distortion of the cubic lattice in the plane of the NdGaO3(110) substrate leads to uniaxial anisotropy of the magnetization of the film, with the easy-magnetization axis lying in the substrate plane. However, LSMO films on substrates (((LaAlO3)0.3+(Sr2AlTaO6)0.7)(001)) ensuring minimum strain of the films exhibit a biaxial anisotropy typical of cubic crystals. The study of the ferromagnetic resonance lines at a frequency of 9.76 GHz confirms the results of magnetooptical investigations and indicates that the ferromagnetic phase in the LSMO films is weakly inhomogeneous.  相似文献   

5.
Combination of thermochromism of perovskite-type materials and gratings can result in some interesting variations of the spectral properties of structured surfaces. This paper aims at investigating thermal absorptive/radiative characteristics of structured thermochromic material La0.825Sr0.175MnO3 (LSMO) with metallic and/or dielectric gratings. Numerical computation is conducted to obtain the distribution of the spectral absorptance of such structured surfaces with different structural parameters. The directional and temperature dependence of absorptance are also analyzed. The results reveal that compared with bulk LSMO material, the structured surface of LSMO achieves an improved thermochromic performance and much thinner layer of a structured LSMO film by combining the film with one-dimensional Al and SiO2 gratings. Therefore, the other advantage of such structured surface is that the reduction of material consumption and weight is achieved due to the smaller LSMO layer thickness, which may be vital for thermal management of space vehicles.  相似文献   

6.
In this study, the spacer-thickness-dependent room-temperature magnetoresistance (RTMR) is investigated in ferromagnetic/antiferromagnetic (FM/AFM) superlattices composed of 10 repetitions of La0.7Sr0.3MnO3/Nd0.6Ca0.4MnO3 [LSMO/NCMO]10. A series of superlattice samples with the thickness of the LSMO layer being fixed at 5 nm while that of the NCMO layer varied from 0 to 5 nm were fabricated using pulsed laser deposition. RTMR is measured at the fields from zero to 10 kOe with two different configurations, in plane (IP) and out-of-plane (OOP). At 10 kOe, RTMR varies with increasing spacer thickness of NCMO at both IP and OOP configurations. A maximum IP MR ratio of 16% at 10 kOe is found in the sample of [LSMO(5 nm)/NCMO(0.45 nm)]10, which is three times that for the pure LSMO film. Therefore, it is concluded that the inserting of the NCMO layer between LSMO layers can effectively tune the RTMR ratio, which might be related to the magnetic coupling between FM and AFM domains.  相似文献   

7.
A pulsed laser deposition technique was used to grow ferromagnetic La0.7Sr0.3MnO3 (LSMO) films on antiferromagnetic La0.33Ca0.67MnO3 (LCMO) and Pr0.7Ca0.3MnO3 (PCMO) films in bilayer forms. The LSMO film on the PCMO layer had a more elongated out-of-plane lattice than that on the LCMO layer. The former had a lower ferromagnetic transition temperature (320 K) than the latter (350 K). The enhanced low-temperature magnetoresistance of the LSMO/PCMO bilayer suggests that the spin frustration is stronger at this bilayer than in the LSMO/LCMO bilayer. These differences indicate that strain state and defect concentration play important roles in governing interfacial spin interactions.  相似文献   

8.
The ultrafast laser-excited magnetization dynamics of ferromagnetic (FM) La0.67Sr0.33MnO3 (LSMO) thin films with BiFeO3 (BFO) coating layers grown by laser molecular beam epitaxy are investigated using the optical pump-probe technique. Uniform magnetization precessions are observed in the films under an applied external magnetic field by measuring the time-resolved magneto-optical Kerr effect. The magnetization precession frequencies of the LSMO thin films with the BFO coating layers are lower than those of uncoated LSMO films, which is attributed to the suppression of the anisotropy field induced by the exchange interaction at the interface between the antiferromagnetic order of BFO and the FM order of LSMO.  相似文献   

9.
Nearly 50-nm thick La0.7Sr0.3MnO3 (LSMO) films were grown on Si substrates using molecular beam epitaxy on (001) Si substrates over-layered by a 20 nm thick SrTiO3 (STO) or by a 20 nm thick CaTiO3 (CTO) film. In addition, a reference LSMO film was directly deposited on a (001) STO substrate by pulsed laser deposition. For all the samples, X-ray diffraction revealed an excellent epitaxy of the LSMO film and small mosaicity around (001), with in-plane [100] and [010] cubic axes. The LSMO/CTO films are in-plane compressed while the LSMO/STO ones are in-plane extended. The temperature dependence of their static magnetic properties was studied using a SQUID, showing a Curie temperature overpassing 315 K for all the samples. Hysteresis loops performed at room temperature (294 K) with the help of a vibrating sample magnetometer (VSM) are also discussed. At 294 K Micro-strip ferromagnetic resonance (MS-FMR) was used to investigate the dynamic magnetic properties. It allows concluding to a strong anisotropy perpendicular to the films and to a weak fourfold in-plane anisotropy with easy axes along the [110] and [1[`1]0 1\bar{1}0 ] directions. Their values strongly depend on the studied sample and are presumably related to the strains suffered by the films.  相似文献   

10.
La0.8Sr0.2MnO3 (LSMO) thin films were fabricated on alumina substrates by an improved sol-gel dip-coating process. It was found that multiple dip-coating process could not be performed until the pre-firing temperature reached 600 °C. Different amounts of LSMO powders were added to precursor solution with an aim to avoid cracks in LSMO thin films during calcining caused by the shrinkage mismatch between the film and the substrate. The structure and surface morphology of the films prepared from precursors with and without LSMO powders were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that the addition of 56.4 wt.% LSMO powders into the sol-gel precursor solution significantly modified the microstructure of films. A single LSMO perovskite phase was obtained on alumina substrate after calcining at 800 °C for 4 h by the improved sol-gel method. The sheet resistance of the films prepared with different processing parameters was measured by four-point dc method. Results indicated that the sheet resistance of films decreased with increasing the number of coating applications and the amount of LSMO powders.  相似文献   

11.
The metal–insulator transition (MIT) behavior in vanadium dioxide (VO2) epitaxial film is known to be dramatically affected by interfacial stress due to lattice mismatching. For the VO2/TiO2 (001) system, there exists a considerable strain in ultra‐thin VO2 thin film, which shows a lower Tc value close to room temperature. As the VO2 epitaxial film grows thicker layer‐by‐layer along the “bottom‐up” route, the strain will be gradually relaxed and Tc will increase as well, until the MIT behavior becomes the same as that of bulk material with a Tc of about 68 °C. Whereas, in this study, we find that the VO2/TiO2 (001) film thinned by “top‐down” wet‐etching shows an abnormal variation in MIT, which accompanies the potential relaxation of film strain with thinning. It is observed that even when the strained VO2 film is etched up to several nanometers, the MIT persists, and Tc will increase up to that of bulk material, showing the trend to a stress‐free ultra‐thin VO2 film. The current findings demonstrate a facial chemical‐etching way to change interfacial strain and modulate the phase transition behavior of ultrathinVO2 films, which can also be applied to other strained oxide films.  相似文献   

12.
La0.8Sr0.2MnO3 (LSMO) films were prepared on LaAlO3 substrates by excimer laser metal organic deposition (ELMOD) at 500 °C. The temperature dependence of resistance of the LSMO films was investigated by changing the laser fluence, irradiation time, and film thickness. It was found that the resistance of the LSMO films 80 nm in thickness that were irradiated by an ArF laser at a fluence of 100 mJ/cm2 for 60 min showed a metallic temperature dependence, and the maximum temperature coefficient of resistance of the films (defined as 1/R×dR/dT) was 3.4% at 265 K. PACS 81.15.-z; 81.15.Fg; 81.15.Np; 73.61.-r; 71.30.+h  相似文献   

13.
La0.7Sr0.3MnO3 (LSMO) manganite thin films were grown by pulsed plasma deposition on silicon (Si) and gallium arsenide (GaAs) substrates covered by an amorphous oxide. Manganite films are characterized by polycrystalline structure. Ferromagnetic transition is above room temperature and for 50 nm thick film the Curie temperature was as high as 325 K and 305 K for LSMO/SiOx/Si and LSMO/AlOx/GaAs, respectively.  相似文献   

14.
Meng He 《Applied Surface Science》2007,253(14):6080-6084
La0.9Sr0.1MnO3 (LSMO) ultrathin films with various thickness (in the range of 5-50 unit cells) are grown on (0 0 1) substrates of the single-crystal SrTi0.99Nb0.01O3 by laser molecular-beam epitaxy (laser-MBE), and the surface morphology of these films were measured by scanning tunneling microscopy (STM). STM images of LSMO ultrathin film surface reveal that surface morphology becomes more flat with increasing film thickness. This study highlights the important effect of strain caused by the lattice mismatch between substrates and ultrathin films. And the results should be useful to the investigations on growing manganite perovskite materials.  相似文献   

15.
La0.7Sr0.3MnO3 (LSMO) can act as a spin injection electrode in organic spin-valves and organic light-emitting devices. For the latter application, good control of the electronic structure of the organic/LSMO interface is a key issue to ensure sufficient current injection in the device. By exposing cleaned LSMO surfaces to activated oxygen and hydrogen, the work function of the samples can reach 5.15 and 4.3 eV, respectively, as shown by in situ photoemission measurements. The initial stage of formation of the organic/LSMO interface upon deposition of N,N′-bis-(1-naphyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB) onto the oxygen-treated LSMO surface is examined. We find that the NPB molecules evenly cover the LSMO surface and that the interface barrier height is 0.8 eV, which is comparable to that at the NPB/indium tin oxide (ITO) interface with the ITO surface pretreated in situ by oxygen plasma.  相似文献   

16.
As reported in the literature, structural domains in (110) oriented rhombohedral La1? x Sr x MnO3 (LSMO) films on (110) SrTiO3 show a pattern with alternating domain widths and inclined domain walls. An appropriate one-dimensional periodic domain model was developed and the non-uniform strain field in a coherently grown film was calculated by applying the coherency-defect approach. The strain is sharply peaked at the junction of the domain walls and the film/substrate interface. The dependence of the equilibrium domain-width ratio and domain-pattern period on film thickness was determined by minimizing the sum of elastic and domain-wall energies. The proposed domain structure can be formed only in a certain range of the film's crystal-structure data compared to the substrate. Corresponding composition-dependent structure data of LSMO are compiled.  相似文献   

17.
应力对La0.83Sr0.17MnO3薄膜输运性能的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
江阔  李合非  宫声凯 《物理学报》2006,55(3):1435-1440
采用溶胶-凝胶方法在Si(111)上制备了LSMO(x=0.17)薄膜.研究了块体材料和不同厚度薄膜R -T曲线、红外光谱和X射线衍射.结果表明,LSMO薄膜属于正交晶体结构,薄膜取向与膜厚度 有关,当膜厚度为450nm或680nm时,主要取向〈200〉,而膜厚度为900nm时取向为〈020〉 :根据离子对相互作用能和谐振子模型,得到了红外吸收与Mn—O—Mn键长和键角关系式,6 00cm-1附近红外吸收与晶格常数b的变化有关;块体与薄膜的金属—绝缘体转变 温度(TMI)存在较大差别,薄膜转变温度显著低于块体,并与厚度有一定关系. 认为是LSMO薄膜中的应力诱导了晶格常数变化,引起键角改变及JT效应是转变温度变化的主 要原因. 关键词: 单晶硅 晶格常数 金属—绝缘体转变温度 应力诱导  相似文献   

18.
Oxide heterojunctions made of p-type La0.8Sr0.2MnO3 (LSMO) and niobium-doped n-type SrTiO3 (STO:Nb) have been fabricated by the pulsed laser deposition (PLD) technique and characterized under UV light irradiation by measuring the current-voltage, photovoltaic properties and the junction capacitance. It is shown that the heterojunctions work as an efficient UV photodiode, in which photogenerated holes in the STO:Nb substrate are injected to the LSMO film. The maximum surface hole density Q/e and external quantum efficiency γ are estimated to be 8.3×1012 cm−2 and 11% at room temperature, respectively. They are improved significantly in a p-i-n junction of LSMO/STO/STO:Nb, where Q/e and γ are 3.0×1013 cm−2 and 27%, respectively.  相似文献   

19.
We have used photoelectron emission microscopy (PEEM) and X-ray magnetic circular dichroism (XMCD) to study the effect of thin film thickness on the magnetic domain formation in La0.6Sr0.4MnO3 samples that were epitaxially grown on stepped SrTiO3 (0 0 1) substrates. The magnetic image exhibited a stripe structure elongated along the step direction, irrespective of film thickness, suggesting that uniaxial magnetic anisotropy induced by step-and-terrace structures plays an important role in the magnetic domain formation. Additional domains evolved gradually with increasing film thickness. In these domains, the direction of magnetization differed from the step direction due to biaxial magneto-crystalline anisotropy. The evolution of additional magnetic domains with increasing film thickness implies that a competition exists between the two anisotropies in LSMO films.  相似文献   

20.
<正>We fabricated La_(1-x)Sr_xMnO_3/Si(LSMO/Si) heterojunctions with different Sr doping concentrations(x = 0.1, 0.2,0.3) in LSMO and studied the Sr content influence on magnetoresistance(MR) ratio.The hetero junctions show positive MR and high sensitivity of MR ratio in a low applied magnetic field.The MR ratio is dependent on Sr content and the low Sr doping in LSMO causes a large positive MR in LSMO/Si junctions.The MR ratio for 0.1 Sr doping in the LSMO/Si heterostructure is 116%in 100 Oe(1 Oe=79.5775 A/m) at 210 K.The mechanism for the positive MR dependence on the doping density is considered to be the competition between the tunneling rate of electrons in e_g~1↑to t_(2g)↓band and that to e_g~2↑band at the interface region of LSMO.The experimental results are in agreement with those observed in La_(0.9)Sr_(0.1)MnO_3/SrNb_(0.01)Ti_(0.99)O_3 p-n junction.The results indicate that choosing low doping concentration to improve the low field sensitivity of the heterojunction devices is a very efficacious method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号