首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 388 毫秒
1.
In this paper, the variable-coefficient diffusion-advection (DA) equation, which arises in modeling various physical phenomena, is studied by the Lie symmetry approach. The similarity reductions are derived by determining the complete sets of point symmetries of this equation, and then exact and numerical solutions are reported for the reduced second-order nonlinear ordinary differential equations. Further, an extended (Gl/G)-expansion method is applied to the DA equation to construct some new non-traveling wave solutions.  相似文献   

2.
The residual symmetry relating to the truncated Painlev′e expansion of the Kadomtsev–Petviashvili(KP) equation is nonlocal, which is localized in this paper by introducing multiple new dependent variables. By using the standard Lie group approach, new symmetry reduction solutions for the KP equation are obtained based on the general form of Lie point symmetry for the prolonged system. In this way, the interaction solutions between solitons and background waves are obtained, which are hard to find by other traditional methods.  相似文献   

3.
In this paper, the (G′/G)-expansion method is extended to solve fractional partial differential equations in the sense of modified Riemann-Liouville derivative. Based on a nonlinear fractional complex transformation, a certain fractional partial differential equation can be turned into another ordinary differential equation of integer order. For illustrating the validity of this method, we apply it to the space-time fractional generalized Hirota-Satsuma coupled KdV equations and the time-fractional fifth-order Sawada-Kotera equation. As a result, some new exact solutions for them are successfully established.  相似文献   

4.
In this paper, a class of lump solutions to the (2+1)-dimensional Sawada–Kotera equation is studied by searching for positive quadratic function solutions to the associated bilinear equation. To guarantee rational localization and analyticity of the lumps, some sufficient and necessary conditions are presented on the parameters involved in the solutions. Then, a completely non-elastic interaction between a lump and a stripe of the(2+1)-dimensional Sawada–Kotera equation is obtained, which shows a lump solution is drowned or swallowed by a stripe soliton. Finally, 2-dimensional curves, 3-dimensional plots and density plots with particular choices of the involved parameters are presented to show the dynamic characteristics of the obtained lump and interaction solutions.  相似文献   

5.
杨沛  陈勇  李志斌 《理论物理通讯》2010,53(6):1027-1034
In this paper, the short-wave model equations are investigated, which are associated with the Camassa- Holm (CH) and Degasperis Procesi (DP) shallow-water wave equations. Firstly, by means of the transformation of the independent variables and the travelling wave transformation, the partial differential equation is reduced to an ordinary differential equation. Secondly, the equation is solved by homotopy analysis method. Lastly, by the transformatioas back to the original independent variables, the solution of the original partial differential equation is obtained. The two types of solutions of the short-wave models are obtained in parametric form, one is one-cusp soliton for the CH equation while the other one is one-loop soliton for the DP equation. The approximate analytic solutions expressed by a series of exponential functions agree well with the exact solutions. It demonstrates the validity and great potential of homotopy analysis method for complicated nonlinear solitary wave problems.  相似文献   

6.
In this paper, we set up dynamic solitary perturb solutions of a unidirectional stochastic longitudinal wave equation in a magneto-electro-elastic annular bar by a feasible, useful, and influential method named the dual(G’/G, 1/G)-expansion method. Computer software, like Mathematica, is used to complete this discussion. The obtained solutions of the proposed equation are classified into trigonometric, hyperbolic, and rational types which play an important role in searching for numerous scientif...  相似文献   

7.
LIU  Chun-Ping 《理论物理通讯》2009,51(6):985-988
In a recent article [Physics Letters A 372 (2008) 417], Wang et al. proposed a method, which is called the (G′/G)-expansion method, to look for travelling wave solutions of nonlinear evolution equations. The travelling wave solutions involving parameters of the KdV equation, the mKdV equation, the variant Boussinesq equations, and the Hirota-Satsuma equations are obtained by using this method. They think the (G′/G)-expansion method is a new method and more travelling wave solutions of many nonlinear evolution equations can be obtained. In this paper, we will show that the (G′/G)-expansion method is equivalent to the extended tanh function method.  相似文献   

8.
The residual symmetry of the generalized Kaup-Kupershmidt(gKK) equation is obtained from the truncated Painlevé expansion and localized to a Lie point symmetry in a prolonged system. New symmetry reduction solutions of the prolonged system are given by using the standard Lie symmetry method. Furthermore, the g KK equation is proved to integrable in the sense of owning consistent Riccati expansion and some new B¨acklund transformations are given based on this property, from which interaction solutions between soliton and periodic waves are given.  相似文献   

9.
刘希忠  俞军  任博  杨建荣 《中国物理 B》2015,24(1):10203-010203
In nonlinear physics,it is very difficult to study interactions among different types of nonlinear waves.In this paper,the nonlocal symmetry related to the truncated Painleve′expansion of the(2+1)-dimensional Burgers equation is localized after introducing multiple new variables to extend the original equation into a new system.Then the corresponding group invariant solutions are found,from which interaction solutions among different types of nonlinear waves can be found.Furthermore,the Burgers equation is also studied by using the generalized tanh expansion method and a new Ba¨cklund transformation(BT)is obtained.From this BT,novel interactive solutions among different nonlinear excitations are found.  相似文献   

10.
In this paper, four transformations are introduced to solve single sine-Gordon equation by using the knowledge of elliptic equation and Jacobian elliptic functions. It is shown that different transformations are required in order to obtain more kinds of solutions to the single sine-Gordon equation.  相似文献   

11.
The Myrzakulov-I equation is a 2+l-dimensional generalization of the Heisenberg ferromagnetic equa- tion and has a non-isospectral Lax pair. The ex- plicit solutions to the Myrzakulov-I equation have been discussed by many researchers. Darboux transformation is one of the useful methods to ob- tain explicit solutions to the nonlinear partial differ- ential equation. The Darboux transformation of de- gree 1 for this equation has been constructed and exact global 'one-soliton' solutions are derived.  相似文献   

12.
We consider the functional separation of variables to the nonlinear diffusion equation with source and convection termut = (A(x)D(u)ux)x B(x)Q(u),Ax ≠ 0.The functional separation of variables to this equation is studied by using the group foliation method.A classification is carried out for the equations which admit the function separable solutions.As a consequence,some solutions to the resulting equations are obtained.  相似文献   

13.
In this paper,the(2+1)-dimensional Hunter-Saxton equation is proposed and studied.It is shown that the(2+1)-dimensional Hunter–Saxton equation can be transformed to the Calogero–Bogoyavlenskii–Schiff equation by reciprocal transformations.Based on the Lax-pair of the Calogero–Bogoyavlenskii–Schiff equation,a non-isospectral Lax-pair of the(2+1)-dimensional Hunter–Saxton equation is derived.In addition,exact singular solutions with a finite number of corners are obtained.Furthermore,the(2+1)-dimensional μ-Hunter–Saxton equation is presented,and its exact peaked traveling wave solutions are derived.  相似文献   

14.
In this paper, the fractional auxiliary sub-equation expansion method is proposed to solve nonlinear fractional differential equations. To illustrate the effectiveness of the method, we discuss the space-time fractional Kd V equation, the space-time fractional RLW equation, the space-time fractional Boussinesq equation, and the(3+1)-spacetime fractional ZK equation. The solutions are expressed in terms of fractional hyperbolic and fractional trigonometric functions. These solutions are useful to understand the mechanisms of the complicated nonlinear physical phenomena and fractional differential equations. Among these solutions, some are found for the first time. The analytical solution of homogenous linear FDEs with constant coefficients are obtained by using the series and the Mittag–Leffler function methods. The obtained results recover the well-know solutions when α = 1.  相似文献   

15.
In this paper, new exact solutions of the time fractional KdV–Khokhlov–Zabolotskaya–Kuznetsov(KdV–KZK) equation are obtained by the classical Kudryashov method and modified Kudryashov method respectively. For this purpose, the modified Riemann–Liouville derivative is used to convert the nonlinear time fractional KdV–KZK equation into the nonlinear ordinary differential equation. In the present analysis, the classical Kudryashov method and modified Kudryashov method are both used successively to compute the analytical solutions of the time fractional KdV–KZK equation. As a result, new exact solutions involving the symmetrical Fibonacci function, hyperbolic function and exponential function are obtained for the first time. The methods under consideration are reliable and efficient, and can be used as an alternative to establish new exact solutions of different types of fractional differential equations arising from mathematical physics.The obtained results are exhibited graphically in order to demonstrate the efficiencies and applicabilities of these proposed methods of solving the nonlinear time fractional KdV–KZK equation.  相似文献   

16.
In this paper, a series of two line-soliton solutions and double periodic solutions of Chaffee-Infante equation have been obtained by using a new transformation. Unlike the existing methods which are used to find multiple soliton solutions of nonlinear partial differential equations, this approach is constructive and pure algebraic. The results found here are tested on computer and therefore their validity is ensured.  相似文献   

17.
This article studies the performance of analytical, semi-analytical and numerical scheme on the complex nonlinear Schr¨odinger(NLS) equation. The generalized auxiliary equation method is surveyed to get the explicit wave solutions that are used to examine the semi-analytical and numerical solutions that are obtained by the Adomian decomposition method, and B-spline schemes(cubic, quantic, and septic). The complex NLS equation relates to many physical phenomena in different branches of science like a quantum state, fiber optics, and water waves. It describes the evolution of slowly varying packets of quasi-monochromatic waves, wave propagation, and the envelope of modulated wave groups, respectively. Moreover, it relates to Bose-Einstein condensates which is a state of matter of a dilute gas of bosons cooled to temperatures very close to absolute zero. Some of the obtained solutions are studied under specific conditions on the parameters to constitute and study the dynamical behavior of this model in two and three-dimensional.  相似文献   

18.
In this paper,we use the fractional complex transform and the(G'/G)-expansion method to study the nonlinear fractional differential equations and find the exact solutions.The fractional complex transform is proposed to convert a partial fractional differential equation with Jumarie’s modified Riemann–Liouville derivative into its ordinary differential equation.It is shown that the considered transform and method are very efficient and powerful in solving wide classes of nonlinear fractional order equations.  相似文献   

19.
In this article,we use the fractional complex transformation to convert nonlinear partial fractional differential equations to nonlinear ordinary differential equations.We use the improved(G’/G)-expansion function method to calculate the exact solutions to the time-and space-fractional derivative foam drainage equation and the time-and space-fractional derivative nonlinear KdV equation.This method is efficient and powerful for solving wide classes of nonlinear evolution fractional order equations.  相似文献   

20.
李志芳  阮航宇 《中国物理 B》2010,19(4):40201-040201
The extended symmetry approach is used to study the general Korteweg-de Vries-type (KdV-type) equation. Several variable-coefficient equations are obtained. The solutions of these resulting equations can be constructed by the solutions of original models if their solutions are well known, such as the standard constant coefficient KdV equation and the standard compound KdV--Burgers equation, and so on. Then any one of these variable-coefficient equations can be considered as an original model to obtain new variable-coefficient equations whose solutions can also be known by means of transformation relations between solutions of the resulting new variable-coefficient equations and the original equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号