首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The principle of increasing entropy (PIE) is commonly considered as a universal physical law tbr natural systems. It also means that a non-equilibrium steady state (NESS) must not appear in any isolated natural systems. Here we experimentally investigate an isolated human social system with a clustering effect. We report that the PIE cannot always hold, and that NESSs can come to appear. Our study highlights the role of human adaptability in the PIE, and makes it possible to study human social systems by using some laws originating from traditional physics.  相似文献   

2.
The unique scaling behavior of financial time series have attracted the research interest of physicists. Variables such as stock returns, share volume, and number of trades have been found to display distributions that are consistent with a power-law tail. We present an overview of recent research joining practitioners of economic theory and statistical physics to try to understand better some puzzles regarding economic fluctuations. One of these puzzles is how to describe outliers, i.e. phenomena that lie outside of patterns of statistical regularity. We review recent research, which suggests that such outliers may not in fact exist and that the same laws seem to govern outliers as well as day-to-day fluctuations.  相似文献   

3.
李凯辉  刘汉泽  辛祥鹏 《物理学报》2016,65(14):140201-140201
本文运用李群分析的方法研究了一类高阶非线性波方程,得到了五阶非线性波方程的对称以及方程的最优系统,进而运用幂级数的方法,求得了方程的精确幂级数解.最后,给出了五阶非线性波方程的一些守恒律.  相似文献   

4.
It is increasingly recognized that a key component of successful infection control efforts is understanding the complex, two-way interaction between disease dynamics and human behavioral and social dynamics. Human behavior such as contact precautions and social distancing clearly influence disease prevalence, but disease prevalence can in turn alter human behavior, forming a coupled, nonlinear system. Moreover, in many cases, the spatial structure of the population cannot be ignored, such that social and behavioral processes and/or transmission of infection must be represented with complex networks. Research on studying coupled disease–behavior dynamics in complex networks in particular is growing rapidly, and frequently makes use of analysis methods and concepts from statistical physics. Here, we review some of the growing literature in this area. We contrast network-based approaches to homogeneous-mixing approaches, point out how their predictions differ, and describe the rich and often surprising behavior of disease–behavior dynamics on complex networks, and compare them to processes in statistical physics. We discuss how these models can capture the dynamics that characterize many real-world scenarios, thereby suggesting ways that policy makers can better design effective prevention strategies. We also describe the growing sources of digital data that are facilitating research in this area. Finally, we suggest pitfalls which might be faced by researchers in the field, and we suggest several ways in which the field could move forward in the coming years.  相似文献   

5.
Concepts of quantum theory are considered from the constructive “finite” point of view. The introduction of a continuum or other actual infinities in physics destroys constructiveness without any need for them in describing empirical observations. It is shown that quantum behavior is a natural consequence of symmetries of dynamical systems. The underlying reason is that it is impossible in principle to trace the identity of indistinguishable objects in their evolution—only information about invariant statements and values concerning such objects is available. General mathematical arguments indicate that any quantum dynamics is reducible to a sequence of permutations. Quantum phenomena, such as interference, arise in invariant subspaces of permutation representations of the symmetry group of a dynamical system. Observable quantities can be expressed in terms of permutation invariants. It is shown that nonconstructive number systems, such as complex numbers, are not needed for describing quantum phenomena. It is sufficient to employ cyclotomic numbers—a minimal extension of natural numbers that is appropriate for quantum mechanics. The use of finite groups in physics, which underlies the present approach, has an additional motivation. Numerous experiments and observations in the particle physics suggest the importance of finite groups of relatively small orders in some fundamental processes. The origin of these groups is unclear within the currently accepted theories—in particular, within the Standard Model.  相似文献   

6.
7.
We review the methods and use of random quantum states with particular emphasis on recent theoretical developments and applications in various fields. The guiding principle of the review is the idea that random quantum states can be understood as classical probability distributions in the Hilbert space of the associated quantum system. We show how this central concept connects questions of physical interest that cover different fields such as quantum statistical physics, quantum chaos, mesoscopic systems of both non-interacting and interacting particles, including superconducting and spin–orbit phenomena, and stochastic Schrödinger equations describing open quantum systems.  相似文献   

8.
周奇 《大学物理》2008,27(3):47-56
介绍狭义相对论诞生的历史背景,爱因斯坦创立狭义相对论的新思维和创造性,发现自然界两条基本原理及其建立新的相对性时空结构理论及新的运动学定律的思路历程.由此揭示和证明时空相对性结构是一切自然界定律对相对运动保持其不变性和对称性的基础,也是自然界因果关系成立的基础,最后介绍从狭义相对论得出的自然界的一系列新奇结论和定律.  相似文献   

9.
《Physics letters. A》2014,378(5-6):488-493
It is well-known that the principle of increasing entropy holds for isolated natural systems that contain non-adaptive molecules. Here we present, for the first time, an experimental evidence for a possible human counterpart of the principle in an isolated social system that involves adaptive humans. Our work shows that the human counterpart is valid even though interactions among humans in social systems are distinctly different from those among molecules in natural systems. Thus, it becomes possible to understand social systems from this natural principle, at least to some extent.  相似文献   

10.
One challenge of economics is that the systems treated by these sciences have no perfect metronome in time and no perfect spatial architecture—crystalline or otherwise. Nonetheless, as if by magic, out of nothing but randomness one finds remarkably fine-tuned processes in time. We present an overview of recent research joining practitioners of economic theory and statistical physics to try to better understand puzzles regarding economic fluctuations. One of these puzzles is how to describe outliers, phenomena that lie outside of patterns of statistical regularity. We review evidence consistent with the possibility that such outliers may not exist. This possibility is supported by recent analysis of databases containing information about each trade of every stock.  相似文献   

11.
Containing the spread of crime in urban societies remains a major challenge. Empirical evidence suggests that, if left unchecked, crimes may be recurrent and proliferate. On the other hand, eradicating a culture of crime may be difficult, especially under extreme social circumstances that impair the creation of a shared sense of social responsibility. Although our understanding of the mechanisms that drive the emergence and diffusion of crime is still incomplete, recent research highlights applied mathematics and methods of statistical physics as valuable theoretical resources that may help us better understand criminal activity. We review different approaches aimed at modeling and improving our understanding of crime, focusing on the nucleation of crime hotspots using partial differential equations, self-exciting point process and agent-based modeling, adversarial evolutionary games, and the network science behind the formation of gangs and large-scale organized crime. We emphasize that statistical physics of crime can relevantly inform the design of successful crime prevention strategies, as well as improve the accuracy of expectations about how different policing interventions should impact malicious human activity that deviates from social norms. We also outline possible directions for future research, related to the effects of social and coevolving networks and to the hierarchical growth of criminal structures due to self-organization.  相似文献   

12.
We combine the Fermi and Moran update rules in the spatial prisoner's dilemma and snowdrift games to investigate the behavior of collective cooperation among agents on the regular lattice.Large-scale simulations indicate that,compared to the model with only one update rule,the cooperation behavior exhibits the richer phenomena,and the role of update dynamics should be paid more attention in the evolutionary game theory.Meanwhile,we also observe that the introduction of Moran rule,which needs to consider all neighbor's information,can markedly promote the aggregate cooperation level,that is,randomly selecting the neighbor proportional to its payoff to imitate will facilitate the cooperation among agents.Current results will contribute to further understand the cooperation dynamics and evolutionary behaviors within many biological,economic and social systems.  相似文献   

13.
We combine the Fermi and Moran update rules in the spatial prisoner's dilemma and snowdrift games to investigate the behavior of collective cooperation among agents on the regular lattice. Large-scale simulations indicate that, compared to the model with only one update rule, the cooperation behavior exhibits the richer phenomena, and the role of update dynamics should be paid more attention in the evolutionary game theory. Meanwhile, we also observe that the introduction of Moran rule, which needs to consider all neighbor's information, can markedly promote the aggregate cooperation level, that is, randomly selecting the neighbor proportional to its payoff to imitate will facilitate the cooperation among agents. Current results will contribute to further understand the cooperation dynamics and evolutionary behaviors within many biological, economic and social systems.  相似文献   

14.
15.
We review the behavior of a recently introduced model of agreement dynamics, called the "Naming Game." This model describes the self-organized emergence of linguistic conventions and the establishment of simple communication systems in a population of agents with pairwise local interactions. The mechanisms of convergence towards agreement strongly depend on the network of possible interactions between the agents. In particular, the mean-field case in which all agents communicate with all the others is not efficient, since a large temporary memory is requested for the agents. On the other hand, regular lattice topologies lead to a fast local convergence but to a slow global dynamics similar to coarsening phenomena. The embedding of the agents in a small-world network represents an interesting tradeoff: a local consensus is easily reached, while the long-range links allow to bypass coarsening-like convergence. We also consider alternative adaptive strategies which can lead to faster global convergence.  相似文献   

16.
There exist several phenomena breaking the classical probability laws. The systems related to such phenomena are context-dependent, so that they are adaptive to other systems. In this paper, we present a new mathematical formalism to compute the joint probability distribution for two event-systems by using concepts of the adaptive dynamics and quantum information theory, e.g., quantum channels and liftings. In physics the basic example of the context-dependent phenomena is the famous double-slit experiment. Recently similar examples have been found in biological and psychological sciences. Our approach is an extension of traditional quantum probability theory, and it is general enough to describe aforementioned contextual phenomena outside of quantum physics.  相似文献   

17.
Here we show that the emergence of scaling laws in inanimate (geophysical) flow systems is analogous to the emergence of allometric laws in animate (biological) flow systems, and that features of evolutionary “design” in nature can be predicted based on a principle of physics (the constructal law): “For a finite-size flow system to persist in time (to live) it must evolve in such a way that it provides easier and easier access to its currents”, meaning that the configuration and function of flow systems change over time in a predictable way that improves function, distributes imperfection, and creates geometries that best arrange high and low resistance areas or volumes. This theoretical unification of the phenomena of animate and inanimate flow design generation is illustrated with examples from biology (lung design, animal locomotion) and the physics of fluid flow (river basins, turbulent flow structure, self-lubrication). The place of this design-generation principle as a self-standing law in thermodynamics is discussed. Natural flow systems evolve by acquiring flow configuration in a definite direction in time: existing configurations are replaced by easier flowing configurations.  相似文献   

18.
19.
Depth is a complexity measure for natural systems of the kind studied in statistical physics and is defined in terms of computational complexity. Depth quantifies the length of the shortest parallel computation required to construct a typical system state or history starting from simple initial conditions. The properties of depth are discussed and it is compared with other complexity measures. Depth can only be large for systems with embedded computation.  相似文献   

20.
《Comptes Rendus Physique》2019,20(6):529-539
We summarize the results of several experiments that show the evolution of some scientific interests and goals of the statistical and nonlinear physics community in the last 40 years. Specifically, we present how the ideas of extending concepts of equilibrium statistical physics to out-of-equilibrium physics have been developed to characterize various phenomena such as, for example, transition to space-time chaos and glass aging. We then discuss the applications of this out-of-equilibrium thermodynamics to microsystems driven out of equilibrium either by external forces or by temperature gradients. We show that in these systems thermal fluctuations play a role and that all thermodynamics quantities, such as work, heat, and entropy fluctuate. We recall general concepts such as fluctuation theorems and fluctuation dissipation relations used to characterize the statistical properties of these small systems. We describe experiments where all these concepts have been applied and tested with high accuracy. Finally, we show how these theoretical concepts and the experiments allowed us to improve our knowledge on the connection between information and thermodynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号