首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The principle of increasing entropy (PIE) is commonly considered as a universal physical law tbr natural systems. It also means that a non-equilibrium steady state (NESS) must not appear in any isolated natural systems. Here we experimentally investigate an isolated human social system with a clustering effect. We report that the PIE cannot always hold, and that NESSs can come to appear. Our study highlights the role of human adaptability in the PIE, and makes it possible to study human social systems by using some laws originating from traditional physics.  相似文献   

2.
It is important to know whether the laws or phenomena in statistical physics for natural systems with non-adaptive agents still hold for social human systems with adaptive agents, because this implies whether it is possible to study or understand social human systems by using statistical physics originating from natural systems. For this purpose, we review the role of human adaptability in four kinds of specific human behaviors, namely, normal behavior, herd behavior, contrarian behavior, and hedge behavior. The approach is based on controlled experiments in the framework of market-directed resource-allocation games. The role of the controlled experiments could be at least two-fold: adopting the real human decision-making process so that the system under consideration could reflect the performance of genuine human beings;making it possible to obtain macroscopic physical properties of a human system by tuning a particular factor of the system,thus directly revealing cause and effect. As a result, both computer simulations and theoretical analyses help to show a few counterparts of some laws or phenomena in statistical physics for social human systems: two-phase phenomena or phase transitions, entropy-related phenomena, and a non-equilibrium steady state. This review highlights the role of human adaptability in these counterparts, and makes it possible to study or understand some particular social human systems by means of statistical physics coming from natural systems.  相似文献   

3.
Field studies indicate that Japanese macaque (Macaca fuscata) communication signals vary with the social situation in which they occur [S. Green, "Variation of vocal pattern with social situation in the Japanese monkey (Macaca fuscata): A field study," in Primate Behavior, edited by L. A. Rosenblum (Academic, New York, 1975), Vol. 4]. A significant acoustic property of the contact calls produced by these primates is the temporal position of a frequency peak within the vocalization, that is, an inflection from rising to falling frequency [May et al., "Significant features of Japanese macaque communication sounds: A psychophysical study," Anim. Behav. 36, 1432-1444 (1988)]. The experiments reported here are based on the hypothesis that Japanese macaques derive meaning from this temporally graded feature by parceling the acoustic variation inherent in natural contact calls into two functional categories, and thus exhibit behavior that is analogous to the categorical perception of speech sounds by humans. To test this hypothesis, Japanese macaques were trained to classify natural contact calls by performing operant responses that signified either an early or late frequency peak position. Then, the subjects were tested in a series of experiments that required them to generalize this behavior to synthetic calls representing a continuum of peak positions. Demonstration of the classical perceptual effects noted for human listeners suggests that categorical perception reflects a principle of auditory information processing that influences the perception of sounds in the communication systems not only of humans, but of animals as well.  相似文献   

4.
Modeling and simulating human teamwork behaviors using intelligent agents   总被引:1,自引:0,他引:1  
Among researchers in multi-agent systems there has been growing interest in using intelligent agents to model and simulate human teamwork behaviors. Teamwork modeling is important for training humans in gaining collaborative skills, for supporting humans in making critical decisions by proactively gathering, fusing, and sharing information, and for building coherent teams with both humans and agents working effectively on intelligence-intensive problems. Teamwork modeling is also challenging because the research has spanned diverse disciplines from business management to cognitive science, human discourse, and distributed artificial intelligence. This article presents an extensive, but not exhaustive, list of work in the field, where the taxonomy is organized along two main dimensions: team social structure and social behaviors. Along the dimension of social structure, we consider agent-only teams and mixed human–agent teams. Along the dimension of social behaviors, we consider collaborative behaviors, communicative behaviors, helping behaviors, and the underpinning of effective teamwork—shared mental models. The contribution of this article is that it presents an organizational framework for analyzing a variety of teamwork simulation systems and for further studying simulated teamwork behaviors.  相似文献   

5.
Natural computing is a terminology introduced to encompass three classes of methods: (1) those that take inspiration from nature for the development of novel problem-solving techniques; (2) those that are based on the use of computers to synthesize natural phenomena; and (3) those that employ natural materials (e.g., molecules) to compute. The main fields of research that compose these three branches are the artificial neural networks, evolutionary algorithms, swarm intelligence, artificial immune systems, fractal geometry, artificial life, DNA computing, and quantum computing, among others. This paper provides an overview of the fundamentals of natural computing, particularly the fields listed above, emphasizing the biological motivation, some design principles, their scope of applications, current research trends and open problems. The presentation is concluded with a discussion about natural computing, and when it should be used.  相似文献   

6.
New quantization rules for classical systems are obtained using the Titchmarsh expansion. These rules generalize the conventional ones and are reduced to them when a transition to Cartesian coordinates exists. An equation generalizing the Schrödinger equation to arbitrary natural systems is found. The principle of minimal constraint (strong equivalence principle) makes it possible to extend this equation to any curved spaces.  相似文献   

7.
We think that the thermally biological effects of millimeter waves are caused by the thermal motions of water molecules in the living systems, according to experimental fact that the millimeter waves can heat water, and the skin effect on the surface of the biological tissues arising from the millimeter waves. For clarifying this idea we studied the states and features of the liquid water and calculated the rotational energy-spectra of water molecules in the living systems by quantum mechanics. In fact, there is a large number of water which are polarized and have certain dipole moments in the living systems. This shows that the millimeter waves can interact with the water molecules. Through calculation of quantum rotational energy-spectra of the water molecules, we can confirm that the water molecules can absorb the millimeter waves with certain wavelength to generate the rotations of water molecules according to the principle of resonant absorption. One mechanism of the thermally biological effect of the millimeter waves is just a result produced by disorderly thermal-motions of the water molecules which are transformed from their rotation energy caused by the millimeter waves. Owing to the fact that water has a lot of biological functions and plays an important role in the living activity. Thus the heating waters by the millimeter waves can cause a lot of biological effects and phenomena in the living systems. Another mechanism of the thermally biological effect of the millimeter waves is caused by the Joule-Lenz heat arising from the skin effect of the millimeter waves in the skin layers of human beings and animals and membranes of cells which can facilitate the blood circulation in them. We finally study this effect.PACSnumbers: 87.50.Hj; 05.70.Ce; 87.15.He; 65.50.tm.  相似文献   

8.
The adsorption sensitivities of silicon-electrolyte and silicon-porous-silicon-electrolyte systems with respect to organic molecules of different types are compared. It is shown that an additional nanoporous layer on the silicon surface does not improve appreciably the adsorption sensitivity of the silicon-electrolyte system, but it does make it possible in principle to increase the selectivity of this system. Zh. Tekh. Fiz. 68, 118–121 (February 1998)  相似文献   

9.
10.
量子计算机是一种以量子耦合方式进行信息处理的装置[1 ] 。原则上 ,它能利用量子相干干涉方法以比传统计算机更快的速度进行诸如大数的因式分解、未排序数据库中的数据搜索等工作[2 ] 。建造大型量子计算机的主要困难是噪音、去耦和制造工艺。一方面 ,虽然离子陷阱和光学腔实验方法大有希望 ,但这些方法都还没有成功实现过量子计算。另一方面 ,因为隔离于自然环境 ,核自旋可以成为很好的“量子比特” ,可能以非传统方式使用核磁共振 (NMR)技术实现量子计算。本文介绍一种用NMR方法实现量子计算的方法 ,该方法能够用比传统方法少的步骤解决一个纯数学问题。基于该方法的简单量子计算机使用比传统计算机使用更少的函数“调用”判断一未知函数的类别。  相似文献   

11.
根据洛伦兹变换把两个惯性系的坐标原点的时空坐标从一个坐标系变换到另一坐标系,从相对运动的角度说明洛伦兹变换是自洽的,运动物体上发生的自然过程比起静止物体的过程延缓了,并且两个坐标系中的观察者都认为对方的时钟变慢,是“动钟变慢”而非“动钟变快”,不会导致“矛盾方程”,不能混淆同一事件的变换规律与两个事件的变换结果.  相似文献   

12.
As humanity grapples with the concept of autonomy for human–machine teams (A-HMTs), unresolved is the necessity for the control of autonomy that instills trust. For non-autonomous systems in states with a high degree of certainty, rational approaches exist to solve, model or control stable interactions; e.g., game theory, scale-free network theory, multi-agent systems, drone swarms. As an example, guided by artificial intelligence (AI, including machine learning, ML) or by human operators, swarms of drones have made spectacular gains in applications too numerous to list (e.g., crop management; mapping, surveillance and fire-fighting systems; weapon systems). But under states of uncertainty or where conflict exists, rational models fail, exactly where interdependence theory thrives. Large, coupled physical or information systems can also experience synergism or dysergism from interdependence. Synergistically, the best human teams are not only highly interdependent, but they also exploit interdependence to reduce uncertainty, the focus of this work-in-progress and roadmap. We have long argued that interdependence is fundamental to human autonomy in teams. But for A-HMTs, no mathematics exists to build from rational theory or social science for their design nor safe or effective operation, a severe weakness. Compared to the rational and traditional social theory, we hope to advance interdependence theory first by mapping similarities between quantum theory and our prior findings; e.g., to maintain interdependence, we previously established that boundaries reduce dysergic effects to allow teams to function (akin to blocking interference to prevent quantum decoherence). Second, we extend our prior findings with case studies to predict with interdependence theory that as uncertainty increases in non-factorable situations for humans, the duality in two-sided beliefs serves debaters who explore alternatives with tradeoffs in the search for the best path going forward. Third, applied to autonomous teams, we conclude that a machine in an A-HMT must be able to express itself to its human teammates in causal language however imperfectly.  相似文献   

13.
The study of quantum mechanical few-body systems is a century old pursuit relevant to countless subfields of physics. While the two-body problem is generally considered to be well-understood theoretically and numerically, venturing to three or more bodies brings about complications but also a host of interesting phenomena. In recent years, the cooling and trapping of atoms and molecules has shown great promise to provide a highly controllable environment to study few-body physics. However, as is true for many systems where few-body effects play an important role the few-body states are not isolated from their many-body environment. An interesting question then becomes if or (more precisely) when we should consider few-body states as effectively isolated and when we have to take the coupling to the environment into account. Using some simple, yet non-trivial, examples I will try to suggest possible approaches to this line of research.  相似文献   

14.
An investigation is made into the possible quantum mechanical effects due to the inertial force effect in the non-inertial systems, e.g. in atoms and molecules moving with high acceleration. In accordance with Einstein's principle of equivalence similar effects should appear in the sufficiently strong permanent gravitational fields.  相似文献   

15.
The adsorption and electronic properties of isolated cobalt phthalocyanine(Co Pc) molecule on an ultrathin layer of NaCl have been investigated. High-resolution STM images give a detailed picture of the lowest unoccupied molecular orbital(LUMO) of an isolated CoPc. It is shown that the Na Cl ultrathin layer efficiently decouples the interaction of the molecules from the underneath metal substrate, which makes it an ideal substrate for studying the properties of single molecules. Moreover, strong dependence of the appearance of the molecules on the sample bias in the region of relatively high bias( 3.1 V) is ascribed to the image potential states(IPSs) of NaCl/Cu(100), which may provide us with a possible method to fabricate quantum storage devices.  相似文献   

16.
We introduce a complete set of complementary quantities in bipartite, two-dimensional systems. Complementarity then relates the quantitative entanglement measure concurrence which is a bipartite property to the single-particle quantum properties predictability and visibility, for the most general quantum state of two qubits. Consequently, from an interferometric point of view, the usual wave-particle duality relation must be extended to a “triality” relation containing, in addition, the quantitative entanglement measure concurrence, which has no classical counterpart and manifests a genuine quantum aspect of bipartite systems. A generalized duality relation, that also governs possible violations of the Bell’s inequality, arises between single- and bipartite properties.  相似文献   

17.
We derive an expression for the harmonic signal from nonadiabatically aligned molecules that accounts for both electronic and rotational motions. We identify a single approximation, which converts the expression into a physically transparent and computationally convenient form. Our analytical result gives explicitly the time dependence of the harmonic spectra, thus explaining the observations of a class of recent experiments. Moreover, it points to new opportunities for generating insights into the structure and dynamics of molecular systems through harmonic generation experiments from aligned molecules. This includes information regarding the rotational and electronic dynamics of isolated systems, as well as regarding the decoherence and relaxation in molecules subject to a dissipative environment.  相似文献   

18.
Monodromy (or once round) is a classical property of integrable dynamical systems in two or more degrees of freedom, which imposes a characteristic pattern on the quantum mechanical eigenvalue distribution. This article explains the connection by showing how the presence of an isolated critical point of the Hamiltonian leads to a classical action function that is multi-valued with respect to energy and angular momentum. Consequently, by the Bohr correspondence principle between actions and quantum numbers, there can be no uniquely defined global system of quantum numbers. Implications for the interpretation of highly excited molecular spectra are brought out by reference to quasi-linear molecules, which transfer one degree of freedom from rotational to vibrational motion during the excitation process. Emphasis is placed on the simplest examples, while a brief resumé of the wide scope of the quantum monodromy phenomenon is given in the final section.  相似文献   

19.
Natural organic matter (NOM) found in water sources is broadly defined as a mixture of polyfunctional organic molecules, characterized by its complex structure and paramount influence on water quality. Because the inevitable release of pollutants into aquatic environments due to an ineffective control of industrial and agricultural pollution, the evaluation of the interaction of NOM with heavy metals, nanoparticles, organic pollutants and other pollutants in the aquatic environment, has greatly increased. Three-dimensional (3-D) fluorescence has the potential to reveal the interaction mechanisms between NOM and pollutants as well as the source of NOM pollution. In water purification engineering system, the 3-D fluorescence can indicate the variations of NOM composition and gives an effective prediction of water quality as well as the underline water purification mechanisms. Inadequately treated NOM is a cause of precursors of disinfection byproducts (DBPs), posing a potential threat to human health. Effective control and measurement/evaluation of NOM have long been an important factors in the prevention of water pollution. Overall, 3-D fluorescence allows for a rapid identification of organic components thus indicating possible sources of water pollution, mechanisms of pollutant interactions, and possible DBPs formed during conventional treatment of this water. This article reviews the 3-D fluorescence characteristics of NOM in natural water and typical water purification systems. The 3-D fluorescence was effective for indicating the variabilities in NOM composition and chemistry thus providing a better understanding of NOM in natural water system and water engineering system.  相似文献   

20.
The dependence of the energy of three-particle molecules on their masses is examined. It is shown that such molecules with the same values of the ratio of the reduced masses for motion in a “fast” and “slow” Jacobi coordinates have the property of adiabatic similarity: In the adiabatic approximation, their energies are proportional to the reduced masses. This allows information on the energy of molecules symmetric in the masses of particles to be extended to asymmetric molecules adiabatically similar to the symmetric molecules. For molecules with arbitrary masses of the particles, an analytic expression for the adiabatic energy and a formula approximating the exact energy are constructed using the principle of adiabatic similarity. Along with the adiabatic energy, which is the lower bound of the exact energy, a simple procedure is considered for determining the upper bound of the energy of asymmetric molecules from the energy of their symmetric counterparts. Based on these results, values of the lower and upper energy bounds are calculated and an approximation of the exact energy is obtained for 43 three-particle molecular systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号