首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The optical absorption spectra of 1,2-naphthoquinone in polar (methanol) and nonpolar (n-hexane) solvents are recorded. It is found that the specific effect of a polar solvent, which manifests itself in a hypsochromic shift of the first nπ* band and in a bathochromic shift of the second and third ππ* bands, is caused by the formation of hydrogen bonds between solvent molecules and the molecule under study and, as a result, by a change in the energy gap between the corresponding occupied and unoccupied molecular orbitals. This result is obtained by TDDFT B3LYP/6-311+G(d, p) calculations of electronic spectra, which, in the case of an isolated 1,2-naphthoquinone molecule, reproduce its experimental optical absorption spectra in n-hexane and, in the case of the same molecule forming a complex with methanol molecules by means of hydrogen bonds, reproduce the spectrum of 1,2-naphthoquinone in methanol.  相似文献   

2.
We measured the optical absorption spectra of para-benzoquinone and duroquinone in polar (methanol) and nonpolar (n-hexane) solvents. We find that the specific effect of the polar solvent, which manifests itself here as a bathochromic shift of one of π-π* bands, is caused by the formation of hydrogen bonds between solvent molecules and the molecule under study and, as a consequence, by a decrease in the energy gap between the corresponding occupied (π) and unoccupied (π*) molecular orbitals. This result is obtained by TDDFT B3LYP/6-311+G(d, p)-calculations of electronic spectra, which, in the case of isolated para-benzoquinone and duroquinone molecules, reproduce experimental optical absorption spectra of the corresponding compounds in n-hexane and, in the case where these molecules form complexes with methanol molecules by means of hydrogen bonds, reproduce spectra measured in methanol.  相似文献   

3.
We have studied the changes undergone by the fluorescence, absorption and excitation spectra of some indole and carbazole derivatives in various solvents (nonpolar, polar and mixtures of nonpolar with polar solvents), at various temperatures, especially at low temperatures. On the basis of these modifications it has been established that both the solvents through specific interactions and the temperature can lead to the formation of new molecular species. It has been observed that these species may appear both in the excited state and in the ground state of the solute. It has been established that in the case of the achievement of some favourable configurations either under the action of solvent or under the combined action of both the solvent and temperature the investigated compounds (with one exception) form an exciplex with n-propylamine.  相似文献   

4.
The femtosecond time-resolved difference absorption spectra of all-trans-βApo-8′-carotenal have been recorded and analyzed by the singular-value decomposition (SVD) method followed by global fitting using a sequential model for the excited-state energy relaxation. With this model, we have obtained the excited-state absorption spectra and the lifetimes of the corresponding excited states both in nonpolar solvent n-hexane and polar solvent methanol. Three excited states, namely S3(170fs), S2(2.32ps) and S1(26ps) in n-hexane, and two excited states S2 (190fs) and S1(9.4ps) in methanol have been observed. The excited-state absorption spectra of all-trans-β-Apo-8′-carotenal in methanol display a red shift and broadeness, while the lifetime of S1 state becomes shorter. It is proposed that these effects are related to the presence of a carbonyl functional group that leads to the solvent effect on the excited-state energy level. At the same time, it is shown that the SVD method is a useful tool in resolving the time-resolved absorption spectra.  相似文献   

5.
We have measured the absorption and fluorescence spectra and fluorescence quantum yields of sulphone-containing anti-HIV active o-aminophenol molecules in an inert solvent, hexane, and in a polar solvent, acetonitrile. We have studied IR Fourier-transform spectra and examined structural features of o-aminophenols with different substituents in solutions and crystals. Functional groups of molecules that are involved in the formation of hydrogen bonds have been revealed. Proton acceptor properties of o-aminophenol molecules have been theoretically evaluated using the method of molecular electrostatic potential. Using quantum chemistry methods, we have calculated and interpreted absorption and fluorescence spectra of o-aminophenols. Calculation data are compared with experimental results. We have determined the main channels and mechanisms of photophysical relaxation processes in o-aminophenols.  相似文献   

6.
A method of application of differential absorption spectroscopy for determining the absorption spectra of primary 1: 1 solvated complexes between polar molecules of an organic dye and the active component of a binary solvent whose neutral component is a nonpolar liquid is proposed. The method was tested on diluted solutions of 4-dimethylaminochalcone (4-DMC) (which is one of the most efficient spectral-luminescent probes used in present-day medical and biological investigations) in mixtures of n-hexane with acetone at extremely small concentrations of the polar component. It is shown that the experimentally found absolute shift of the long-wavelength absorption band of 4-DMC is in satisfactory quantitative agreement with the analogous value obtained independently on the basis of the theory describing the joint effect of nonlinear (complexation) and linear (solvation) dipole-dipole interactions on the spectral band positions.  相似文献   

7.
Modifications occurring in the fluorescence and excitation spectra of 3-monoethylamino-N-methylphthalimide (3 MANP) dissolved in nonpolar solvents (-hexane and methylcyclohexane) as a function of added n-butanol and n-propanol between -90 and 90°C were measured. The modifications were due to the presence of two types of centres resulting from the interaction of the solvent molecules with the nonpolar solvent on the one hand, and with the polar solvent on the other. The mixed complex character of the fluorescence band was not affected by the concentration of the solution in the range 10-7?5 x 10-4 mol/l. An attempt was made to establish a relationship between the emission due to the centres resulting from the interaction with the alcohol molecules and the association degree of the respective molecules.  相似文献   

8.
The femtosecond time-resolved difference absorption spectra of all-trans-β-Apo-8′-carotenal have been recorded and analyzed by the singular-value decomposition (SVD) method followed by global fitting using a sequential model for the excited-state energy relaxation. With this model, we have obtained the excited-state absorption spectra and the lifetimes of the corresponding excited states both in nonpolar solvent n-hexane and polar solvent methanol. Three excited states, namely S3(170fs), S2(2.32ps) and S1(26ps) in n-hexane, and two excited states S2(190fs) and S1(9.4ps) in methanol have been observed. The excited-state absorption spectra of all-trans-β-Apo-8′-carotenal in methanol display a red shift and broadeness, while the lifetime of S1 state becomes shorter. It is proposed that these effects are related to the presence of a carbonyl functional group that leads to the solvent effect on the excited-state energy level. At the same time, it is shown that the SVD method is a useful tool in resolving the time-resolved absorption spectra.  相似文献   

9.
The influence of selective nonspecific solvation on the fluorescence spectra of three substitutedN-methylphthalimides in a binary solvent system consisting of a nonpolar (n-heptane) and a polar (pyridine) component has been studied under conditions close to dielectric saturation. The substantially nonlinearity of the effect is confirmation that the spectral shifts of fluorescence bands depend on the number of polar solvent molecules involved in solvating the dye molecule. The measured fluorescence spectral shifts determined by substituting one nonpolar solvent molecula with a polar one in the proximity of the dye molecule agree quantitatively with the forecasts of the previously proposed semiempirical theory which describes this nonlinear solvation phenomenon.  相似文献   

10.
The two-level organization of C60 fullerene clusters in solutions of C60 in pure toluene and toluene/N-methyl-2-pyrrolidone solvent mixtures is studied by small-angle X-ray scattering (SAXS). The SAXS data for freshly prepared solutions are compared with the data obtained by dynamic light scattering, a technique we use to assess the temporal stability of the prepared solutions. For all solutions in the mixed solvent, regardless of the ratio between the polar and nonpolar components, the UV?Vis absorption spectra tend to become featureless with time. We attribute this behavior primarily to the presence of the polar component in the molecular environment of fullerene molecules.  相似文献   

11.
A new semiempirical approach previously proposed by the author for describing the regularities of the shift of absorption bands in the IR spectra of ultimately ordered van der Waals complexes is extended to the case of three-component solutions of dyes in binary solvents consisting of neutral (nonpolar) and active (polar) components. This approach is based on the analysis of the specific features of the combined manifestation of nonlinear (complex formation) and linear (solvation) intermolecular forces of dipole-dipole nature in the change in the electrical parameters of interacting molecules. It is shown that the concepts developed enable correct quantitative interpretation of a large amount of available spectral-luminescent data for complexes of 1: 1 composition between molecules of amino-substituted derivatives of phthalimide and molecules of the active component of a binary solvent, with these complexes being solvated by molecules of the nonpolar component of the solvent.  相似文献   

12.
Density functional theory methods were used to investigate various self-assembled photoactive bioorganic systems of interest for artificial minimal cells. The cell systems studied are based on nucleotides or their compounds and consisted of up to 123 atoms (not including the associated water or methanol solvent shells) and are up to 2.5 nm in diameter. The electron correlation interactions responsible for the weak hydrogen and Van derWaals chemical bonds increase due to the addition of a polar solvent (water or methanol). The precursor fatty acid molecules of the system also play a critical role in the quantum mechanical interaction based self-assembly of the photosynthetic center and the functioning of the photosynthetic processes of the artificial minimal cells. The distances between the separated sensitizer, fatty acid precursor, and methanol molecules are comparable to Van derWaals and hydrogen bonding radii. As a result the associated electron correlation interactions compress the overall system, resulting in an even smaller gap between the highest occupied molecular orbital (HOMO), and lowest unoccupied molecular orbital (LUMO) electron energy levels and photoexcited electron tunnelling occurs from the sensitizer (either Ru(bpy)32+ or [Ru(bpy)2(4-Bu-4’-Me-2,2’-bpy)]2++ derivatives) to the precursor fatty acid molecules (notation used: Me = methyl; Bu = butyl; bpy = bipyridine). The shift of the absorption spectrum to the red for the artificial protocell photosynthetic centers might be considered as the measure of the complexity of these systems.  相似文献   

13.
By means of the B3LYP density functional method with the use of the polarized continuum model PCM, we have performed quantum-chemical computations of the electronic absorption and fluorescence spectra of fluorone dianions: fluorescein, dibromofluorescein, eosin, erythrosine, and Rose Bengal in vacuum and methanol. We have revealed conformational features of the structure of fluorone dianions (charge redistribution, changes in the bond lengths and angles between bonds) second by the halogen substitution, the transition from the ground state to an excited state, and the change of the solvent (vacuum-methanol). Absorption and fluorescence wavelengths, constant dipole moments, transition dipole moments, and oscillator strengths have been calculated. We have showed that, upon halogenation of fluorones, the absorption spectra are redshifted and the Stokes shift decreases, which is qualitatively consistent with experimental results.  相似文献   

14.
The effect of the substituents, solvent polarities and hydrogen ion concentration on the electronic structure and UV/VIS absorption spectra of some Schiff bases, derivatives of N-(R-benzylidene)benzidine (R = o-NO2 and o-OH, p-OH) and N-(R-furfurylidene)benzidine (R = H and 5 - NO2), have been studied. The spectral shifts obtained in various organic solvents were discussed on the basis of the specific solute - solvent interactions through the formation of hydrogen bonds between hydrogen-bond donor (HBD) solvents and the benzidine nitrogen atom of the Schiff bases. Some interpretations of the electronic aspects of this type of hydrogen bonding were discussed as well as the stabilization effects due to the solvation. Finally, the pK values of the compounds were determined.  相似文献   

15.
We report on the hydrogen bonding between pyrimidine (Pd) and methanol (M) as H‐donor in this study. Hydrogen bonds between pyrimidine and methanol molecules as well as those between different methanol molecules significantly influence the spectral features at high dilution. The ring‐breathing mode ν1 of the reference system Pd was chosen as a marker band to probe the degree of hydrogen bonding. Polarized Raman spectra in the region 970–1020 cm−1 for binary mixtures of (pyrimidine + methanol) at 28 different mole fractions were recorded. A Raman line shape analysis of the isotropic Raman line profiles at all concentrations revealed three distinct spectral components at mole fractions of Pd below 0.75. The three components are attributed to three distinct groups of species: ‘free Pd’ (pd), ‘Pd with low methanol content’ (pd1) and ‘Pd with high‐methanol content’ (pd2). The two latter species differ considerably in the pattern and the strengths of the hydrogen bonds. The results of density functional theory calculations on structures and vibrational spectra of neat Pd and eight Pd/M complexes with varying methanol content support our interpretations of the experimental results. A nice spectra–structure correlation for the different cluster subgroups was obtained, similar to earlier results obtained for Pd and water. Apart from N···H and O···H hydrogen bonds between pyrimidine and methanol, O···H hydrogen bonds formed among the methanol molecules in the cluster at high methanol content also play a crucial role in the interpretation of the experimental results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
The nonradiative relaxation of the triplet states of oxy-and amino-derivatives of naphthalene and conjugated ions is studied by luminescent and kinetic methods (measurements of the phosphorescence decay and of phosphorescence excitation and phosphorescence spectra) in solid solutions of ethanol-h 6, ethanol-d 6, and mixtures of toluene-h 8 with piperidine-h 11 at 77 K. It is found that, along with intramolecular factors, a microsolvate surrounding a molecule or an ion substantially affects the nonradiative relaxation. The contribution of this factor in ethanol increases in the series cation-polar molecule-anion and in mixtures of toluene with piperidine—with increasing piperidine concentration. The results are interpreted assuming the inductive-resonance dipole-dipole transfer of the triplet energy to the dipole acceptors of intramolecular bonds and bonds with molecules of the environment. The relative arrangement of hydrogen atoms of OH groups of ethanol molecules in microsolvates of cations and anions estimated using the inductive-resonance model agrees with the difference in the structure of solvates of oppositely charged ions, which is caused by the electrostatic charge-dipole interaction and the distribution of the electron density in the ground state of the corresponding emitting center. The inductive-resonance model was used for studying the features of solvation processes involving polar molecules. It is shown that the difference between the structures of microsolvates of 2-oxy-naphthalene molecules in solvents with close dipole moments (ethanol and piperidine) is mainly caused by the different ability of these solvent molecules to form associates. The structure of microsolvates of oxy-derivatives of naphthalene in the associated amphoteric solvent is found to depend on the number and position of substituents. In oxy-derivatives of naphthalene with spatially separated OH groups in ethano-d 6, deuteroexchange occurs in both substituents, whereas in the naphthalene derivative with adjacent OH groups this occurs only in one of the groups. Comparison of the phosphorescence spectra of hydrogen-bond complexes and proton-transfer complexes in nonpolar solvents at 77 K revealed the existence of molecular naphthol entities in the triplet state that were formed from ionized entities in the singlet state.  相似文献   

17.
We have measured the absorption, fluorescence, fluorescence excitation spectra, fluorescence quantum yields, and IR Fourier-transform spectra of aromatic acids in solutions. We have considered spectroscopic particular features of benzoic acid, its hydroxylated and methoxylated derivatives. Using quantumchemistry methods, we have calculated and interpreted electronic spectra. Data of calculations have been compared with experimental results. We have ascertained the main channels and mechanisms of photophysical relaxation processes in the molecules under study. Proton-acceptor properties of molecules of aromatic acids have been evaluated. We have analyzed in detail mechanisms by which hydrogen bonds are formed, intramolecular charge redistribution is realized, and the electron density of oxygen atoms changes. Spectroscopic indications of participation of oxygen-containing groups in intramolecular interactions and in intermolecular interactions with the formation of cyclic dimers have been revealed.  相似文献   

18.
Through complete neglect of differential overlap (CNDO) calculations of the electronic energy among different possible structures of paracetamol (PA) molecule, it has been concluded that its structure has Cs point group symmetry of the cis‐form in which the methyl group has a restricted free rotation around its bond with the carbon atom of the amide group. The electronic spectra of PA compound were studied in different polar and nonpolar solvents. The temperature effect on the electronic spectra confirms the presence of one conformer only. The hydrogen bonding and the orientation energies of the polar solvents were determined from the studies of mixed solvents. Complexes of PA with metal ions M(II) (Cu++, Zn++, or Fe++) of ratio 2:1, respectively, were prepared, and their structure has been confirmed by elemental analysis, atomic absorption spectra, IR spectra, and 1H‐NMR spectra. It has been concluded that the structure of the complexes has C2h point group symmetry in which two PA molecules are chelated to any one of the metal ions Cu++, Zn++, and Fe++.  相似文献   

19.
It is proposed to use the method of selective fluorescence excitation to find absorption spectra (fluorescence excitation spectra) of 1 : 1 primary solvated complexes between polar molecules of an organic dye and the active component of a binary solvent, whose neutral component is a nonpolar or low-polarity liquid. The technique was tested with diluted solutions of 4-dimethylaminochalcone (4-DMC) in mixtures of ethylbenzene with dimethyl formamide at extremely low contents of the latter. It is shown that the experimental absolute shift of the long-wavelength vibronic absorption band of three-component DMC solutions is in a good quantitative agreement with the analogous shift obtained independently based on the semi-empirical theory describing the joint effect of nonlinear (complexation) and linear (solvation) dipole-dipole interactions on the shift of spectral bands.  相似文献   

20.
苏丹红系列染料在有机溶液中的紫外-可见光谱研究   总被引:1,自引:0,他引:1  
研究了苏丹红Ⅰ、苏丹红Ⅲ和苏丹红Ⅳ在非极性溶剂石油醚和极性溶剂乙腈及乙腈-水混合溶液中的紫外-可见光谱特征。在极性溶剂中苏丹红系列的可见区特征吸收峰比在非极性溶液中略有红移;在乙腈-水混合溶液中,苏丹红Ⅰ的特征吸收峰比在乙腈溶剂中红移,最大红移达13 nm,吸收强度最大增幅为34.5%;苏丹红Ⅲ的特征吸收峰红移8 nm,吸收强度增幅为11%;苏丹红Ⅳ的特征吸收峰先红移后蓝移,吸收强度增幅数仅为2.5%。造成这一变化的原因是在乙腈-水混合溶液中,苏丹红Ⅰ, Ⅲ, Ⅳ分子内氢键被破坏,扩大了π键离域范围所致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号