首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
以去离子水为工质,在1.0~6.0 MPa的压力范围内对大宽高比(1.0×60 mm,1.8×60 mm,2.5×60 mm)矩形窄缝通道内水的两相沸腾流动特性进行了实验研究.分别采用均相流和分相流模型对试验数据进行处理并得到了相应的修正经验关系式,关系式预测值与实验值符合较好.  相似文献   

2.
本文以去离子水为实验工质,对常压下竖直窄缝通道内过冷流动沸腾的气泡特性进行了实验研究。通过可视化实验分析发现,汽化核心密度主要受壁面过热度影响,气泡脱离直径受壁面过热度、主流过冷度以及质量流速影响。拟合了汽化核心密度和气泡脱离直径的经验关系式,预测结果与实验值误差较小。  相似文献   

3.
螺旋管内高压汽液两相强制对流沸腾传热试验   总被引:1,自引:0,他引:1  
螺旋管式蒸汽发生器或热交换器在核电站、直流锅炉和各种化工设备等领域中都有相当广泛的应用。在高压水回路上对螺旋管中汽液两相强制对流沸腾传热特性进行了试验研究,得到了立式上升流动螺旋管内过冷水紊流流动和过热蒸汽紊流流动时的放热系数。用修正L-M关系式整理了立式上升流动螺旋管内两相强制对流区放热系数,螺旋管在该区的放热系数大致范围为25-40 kw/(m2·℃)。  相似文献   

4.
根据环形管通道内流体流动和换热的特点,以Kirillov和Smogalev提出的干涸点理论模型假设为基础,从最基本的质量守恒方程出发,并引入临界液膜厚度等相应的辅助模型,得到了双面加热环形通道内流动沸腾干涸点的理论模型。同时针对间隙为1.0mm和1.5mm的环形窄缝进行了低压低质量流速工况下干涸点的实验研究。比较发现理论模型预测值与实验结果基本相符。说明本文提出的理论模型适用于低压低流量条件下的窄环形通道。实验同时发现:环状流临界热流密度在系统压力为2.2MPa达到最大值,临界含汽量随质量流速的增大呈缓慢下降趋势。  相似文献   

5.
本文在实验的基础上对窄缝通道中液氮的临界热流密度进行了实验研究。实验针对3个不同长度和间距尺寸的窄缝通道在多方位倾角的情况下进行。实验测量结果显示窄缝的方位倾角和窄缝的间距尺寸对临界热流密度有很大的影响。临界热流密度随窄缝间距尺寸的减小而减小,随着窄缝倾角的变化先增加(0°-90°)后减小(90°-180°),而窄缝长度对临界热流密度的影响作用较为复杂。通常,临界热流密度在倾角为90°时达到最大值。  相似文献   

6.
在实验的基础上对窄缝通道中液氮的临界热流密度进行了实验研究.实验针对3个不同长度和间距尺寸的窄缝通道在多方位倾角的情况下进行.系统研究了窄缝的方位倾角和窄缝的几何尺寸对临界热流密度的影响,同时对液氮的膜态沸腾进行了研究.  相似文献   

7.
有气流扰动下管流油水混合物粘度实验测量与计算模型   总被引:2,自引:0,他引:2  
采用局部即时取样方法对水平管内油气水三相流动情况下各种混合比例的复杂混合物的流动粘度进行了实验研究,实验工质采用46号机械油、自来水和空气。以实验数据为基础提出了考虑流动参数变化影响的反相点预测关联式。考虑到管内油水两相的混合发展过程,以局部即时取样的实验数据为基础,提出了一个气流扰动下管内流动条件下油水混合物粘度的预测关系式,该模型考虑了油水两相本身的物性以及流动因素的影响。指出考虑流动参数影响的粘度预测模型能大大提高油气水三相流动情况下油水混合物实测粘度的预测精度。  相似文献   

8.
气-液两相流设备的性能受限于临界热流密度,开展流动微液膜动力学特性及其稳定性的相关研究是深入理解沸腾危机及临界热流密度机理的关键。采用光学玻璃制成的矩形通道作为实验段,使用微流量齿轮泵驱动去离子水,使其在实验通道入口处与在其上部流动的压缩空气接触形成同向流动的分层流。利用共轭光学探测器对流动微液膜的厚度进行了测量,利用高速摄像机对气-液两相分层流波动特性进行了可视化观测。研究表明,在绝热情况下,当液速一定时,液膜的平均厚度随着气速增加而减小,当气速增加到某一阈值时会导致液膜破裂。  相似文献   

9.
垂直矩形窄缝流道内的过冷流动沸腾换热   总被引:5,自引:1,他引:4  
本文研究了有压模化介质在垂直矩形窄缝流道内的过冷流动沸腾换热,考察了质量流速、断面平均过冷度和饱和压力对沸腾换热系数的影响,与Gungor关系式进行比较,流道的换热强化因于在13~21之间.  相似文献   

10.
多孔介质内两相流汽相输运分析   总被引:1,自引:0,他引:1  
本文结合可视化实验技术对多孔球层内汽液两相流动作深入观察和分析。根据汽泡与多孔球层的相互作用,定义汽泡输运的临界半径并建立汽泡输运的动力学模型。在实验观察和合理假设的基础上,定量讨论了汽相流动由分散态到连续态的转变,确定了临界转变点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号