首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
Ln7O6(BO3)(PO4)2:Eu(Ln=La,Gd,Y)的VUV-UV激发和辐射发光   总被引:1,自引:0,他引:1  
本文报道了Ln 7O6(BO3)(PO4)2:Eu(Ln=La,Gd,Y)在VUV-UV区的激发光谱及Eu3+在可见区的发射光谱.其激发光谱包括基质在真空紫外区的激发带和激活剂离子在紫外区的Eu3+-O2-电荷迁移带,随La3+,Gd3+,Y3+离子半径逐渐减小,Eu3+-O2-电荷迁移带的重心位置逐渐向高能量方向移动,Gd7O6(BO3)(PO4)2:Eu和Y7O6(BO3)(PO4)2:Eu在真空紫外区的吸收与Eu3+-O2-电荷迁移带位于紫外区的吸收的比值要高于在La7O6(BO3)(PO4)2:Eu中的这个比值.激发能可被基质吸收,传递给激活剂离子,得到Eu3+的红光发射.在Gd7O6(BO3)(PO4)2:Eu中,5D0→7F1的发射强度较强,在Y7O6(BO3)(PO4)2:Eu中,5D0→7F2和5D0→7F3的跃迁较强.  相似文献   

2.
采用CaCO3,MgO,SiO2,Eu2O3原料,通过高温固相法制备了Ca3Mg3Si4O14:Eu2+荧光粉.通过XRD图谱和PL光谱图,研究了Eu的掺杂浓度与助溶剂(NH4Cl,BaF2)对Ca3Mg3Si4O14:Eu2+荧光粉结构、发光性能和热稳定的影响.XRD图谱对比结果表明,制备的Ca3Mg3Si4O14:Eu2+荧光粉XRD图与理论计算得到的图谱几乎一致.Ca3Mg3Si4O14:Eu2+荧光粉在360~450 nm有很强的激发强度,并且在440 nm激发下发射峰值波长为530 nm的发射光.随着Eu2+离子浓度的增加,发射光谱出现了红移,且在Eu2+离子浓度约为6%时发生了浓度猝灭现象.当添加NH4Cl和BaF2作为助溶剂,Ca3Mg3Si4O14:Eu2+荧光粉的发光强度有一定提高.与未添加助溶剂的Ca3Mg3Si4O14:Eu2+荧光粉的发光强度相比,添加NH4Cl助溶剂后发光强度增加了70%.此外,当温度升高至150 ℃时,Ca3Mg3Si4O14:Eu2+荧光粉和商用绿色荧光粉的发光强度分别降低了7.6%和14%,表明Ca3Mg3Si4O14:Eu2+荧光粉具有良好的热稳定性.这些发光性能均表明Ca3Mg3Si4O14:Eu2+荧光粉是是一种可应用于固态照明的有前景的绿色荧光粉.  相似文献   

3.
金海杰  田莲花 《发光学报》2011,32(5):451-455
采用高温固相法制备了荧光粉Y2-x(W,Mo)O6:Eu3+,xLi+,利用X射线衍射仪和电子扫描显微镜对样品的结构和形貌进行了表征,并利用荧光光谱法分析了样品的光谱特性.首先在Y2WO6中掺入少量的Mo6+离子,掺入Mo6+后增加了原Y2WO6:Eu3+的激发光谱在近紫外光区的吸收,扩展了激发光谱的谱宽,但却使Y2W...  相似文献   

4.
采用基于高温固相的两步合成法,以BaSiO3为前驱体制备了Ba3Si6O9N4∶Eu2+荧光粉,主要研究了不同Eu2+掺杂浓度对Ba3Si6O9N4∶Eu2+荧光粉发光性能的影响机理,并与传统高温固相法制备的Ba3Si6O9N4∶Eu2+荧光粉的发光机理进行了对比分析。结果表明:与传统高温固相法相比,两步法制备的Ba3Si6O9N4∶Eu2+荧光粉具有更高的纯度和结晶度。Eu2+掺杂浓度大于9%时,两步法和传统高温固相法制备的样品都发生浓度猝灭现象。传统高温固相法与两步法制备Ba3Si6O9N4:Eu2+荧光粉的浓度猝灭机理一致,均是由于电偶极-电偶极相互作用造成的。在330nm的激发光下,两步法制备的Ba3Si6O9N4∶Eu2+荧光粉的发射光谱(峰值489nm)与传统的高温固相法(峰值512nm)相比,出现了蓝移的现象,更加接近于理论发射光谱中心(480nm)。能谱分析结果显示,两步法制备的荧光粉的元素组分更接近理论值,能有效降低晶格缺陷。两步法制备的Ba3Si6O9N4∶Eu2+荧光粉样品具有更好的热稳定性,更利于白光LED的应用。  相似文献   

5.
利用在Ca-Si-O干凝胶前驱体中添加Si3N4的方法于非还原气氛下合成了含N固溶体Ca2Si(O4-xNx):Eu2+绿色荧光粉.通过X射线衍射仪、扫描电子显微镜以及荧光分光光度计分别分析了产物的物相结构、颗粒形貌和发光性能.结果显示,Si3N4与前驱体的混合物在非还原气氛(纯氮气)下于1100℃焙烧后获得含N固溶体Ca2Si(O4-xNx):Eu2+荧光粉,特别是其中Eu3+被还原为Eu2+,产物的晶体结构与β-Ca2SiO4相一致.Ca2Si(O4-xNx):Eu2+能够被270—400 nm范围内的紫外线有效激发,其发射光谱呈宽带发射.随着N含量的增加,发射峰出现一定程度红移(501—504 nm),而且发光强度显著提高.当Eu2+浓度为0.25 mol%时发光强度达最大值,浓度超过0.25 mol%时,发光强度显著降低,出现浓度猝灭效应.  相似文献   

6.
采用溶胶一凝胶法制备了Ca3SiO5:Eu2+发光材料.测量了材料的激发与发射光谱,结果显示,材料的发射光谱为一峰值位于505 nm处的不对称的宽带谱;监测505nm发射峰,所得材料的激发光谱为一双峰宽谱,峰值为374和397nm,研究了合成条件对Ca3SiO5:Eu2+材料发射光谱的影响,结果显示,随合成温度或合成时间或Eu2+浓度的增大,Ca3 siO5:Eu2+材料发射光谱峰值强度均表现出先增大后减小的趋势,当合成温度为1100℃、合成时间为4 h、Eu2+浓度为0.5 mol%时,Ca3SiO5:Eu2+材料发射光谱峰值强度最大.  相似文献   

7.
初本莉  陶冶等 《发光学报》2001,22(3):263-267
本文报道了Ln7O6(BO3)(PO4)2:Eu(Ln=La,Gd,Y)在UVU-UV区的激发光谱及Eu^3 在可见区的发射光谱,其激发光谱包括基质在真空紫外区的激发带和激活剂离子在紫外区的Eu^3 -O^2-电荷迁移带,随着La^3 ,Gd^3 ,Y^3 离子半径逐渐减小,Eu^3 -O^2-电荷迁移带的重心位置逐渐向高能量方向移动,Gd7O6(BO3)(PO4)2:Eu和Y7O6(BO3)(PO4)2:Eu在真空紫外区的吸收与Eu^3 -O^2-电荷迁移带位于紫外区的吸收的比值要高于在La7O6(BO3)(PO4)2:Eu中的这个比值,激发能可被基质吸收,传递给激活剂离子,得到Eu^3 的红光发射,在Gd7O6(BO3)(PO4)2:Eu中,^5D0→^7F1的发射强度较强,在Y7O6(BO3)(PO4)2:Eu中,^5D0→^7F2和^5D0→^7F3的跃迁较强。  相似文献   

8.
采用高温固相法合成了Ca3Y2-2x(Si3O9)2∶2xSm3+系列荧光粉,并表征了材料的发光特性.X射线衍射图谱表明:得到的样品为纯相Ca3Y2(Si3O9)2晶体;样品的激发光谱主要来源于Sm3+的特征激发;分别采用紫外、近紫外和蓝光作为激发源,样品均发射橙红光.在402nm近紫外光激发下,Ca3Y2(Si3O9)2∶Sm3+发射光谱主要由3个峰组成,发射峰值分别位于565nm、604nm和651nm,归属于Sm3+的4G5/2→6HJ/2(J=5,7,9)跃迁,其中发射主峰位于604nm处.通过时间分辨光谱测得Sm3+的4G5/2能级的荧光寿命.随着Sm3+摩尔浓度的增加,样品发光强度先增强后减弱,当x=0.02时发光强度达到最大,浓度猝灭机理为电偶极-电偶极相互作用.  相似文献   

9.
采用高温固相法合成了Ca3Y2-2x(Si3O9)2∶2xSm3+系列荧光粉,并表征了材料的发光特性.X射线衍射图谱表明:得到的样品为纯相Ca3Y2(Si3O9)2晶体;样品的激发光谱主要来源于Sm3+的特征激发;分别采用紫外、近紫外和蓝光作为激发源,样品均发射橙红光.在402 nm近紫外光激发下,Ca3Y2(Si3O9)2∶Sm3+发射光谱主要由3个峰组成,发射峰值分别位于565 nm、604 nm和651 nm,归属于Sm3+的4G5/2→6HJ/2(J=5, 7, 9)跃迁,其中发射主峰位于604 nm处.通过时间分辨光谱测得Sm3+的4G5/2能级的荧光寿命.随着Sm3+摩尔浓度的增加,样品发光强度先增强后减弱,当x=0.02时发光强度达到最大,浓度猝灭机理为电偶极-电偶极相互作用.  相似文献   

10.
刘影  俞淳善  顾光瑞  田莲花 《发光学报》2013,34(9):1113-1117
采用高温固相法制备了红色荧光粉Ca4LaNb(W1-x Mo x)4O20∶Eu3+并研究了样品的发光性质。Ca4LaNbW4O20∶Eu3+的激发光谱中包含一个宽的激发带,峰值位于275 nm,归属于WO2-4基团的电荷迁移跃迁。随着Mo6+离子的掺入,Ca4LaNbW4O20∶Eu3+位于275 nm处的吸收带变宽,其原因是O2--Eu3+的电荷迁移跃迁增强。在Ca4LaNb(W1-x Mo x)4O20∶Eu3+的发射光谱中,400~500 nm间较宽的发射带属于WO2-4基团的发射带,而位于591 nm和616 nm的尖锐的发射峰分别属于Eu3+的5D0→7F1磁偶极跃迁和5D0→7F2电偶极跃迁发射。随着Mo6+离子浓度的增加,WO2-4基团的发射带强度下降,从而提高了色纯度。  相似文献   

11.
通过高温固相法制备了用于紫外激发白光LED的蓝绿色Ca7(SiO4)2Cl6∶Eu2+荧光粉,并对样品进行了XRD分析和发光性能测试。结果表明,合成的样品为单相Ca7(SiO4)2Cl6;在紫外光激发下,样品的发射谱包括418和502nm两个发射峰。分别监测这两个发射峰,得到了峰值位于290和360nm处的两个宽带激发谱,说明Eu2+离子在基质晶格中可能占有两个不同的格位。研究了Eu2+离子浓度对发光强度的影响,最佳掺杂浓度为0.75mol%。结果表明该荧光粉是一种较好的蓝绿色发光材料。  相似文献   

12.
Sr3B2O6∶Tb3+,Li+绿色荧光粉的发光特性   总被引:1,自引:1,他引:0       下载免费PDF全文
用高温固相法合成了Sr3B2O6∶Tb3 ,Li 绿色荧光粉,并研究粉体的发光性质。发射光谱由位于黄绿区的4个主要荧光发射峰组成,峰值分别位于495,548,598,625nm,对应了Tb3 的5D4→7F6,5D4→7F5,5D4→7F4和5D4→7F3特征跃迁发射,548nm的发射最强。激发光谱表现从200~400nm的宽带,可以被近紫外光辐射二极管(near-ultraviolet light-emitting diodes,UVLED)管芯产生的350~410nm辐射有效激发。研究了Tb3 掺杂和电荷补偿剂对样品发光亮度的影响。Sr3B2O6∶Tb3 ,Li 是一种适用于白光LED的绿色荧光粉。  相似文献   

13.
通过固相法合成LED用Zn1-xMo1-ySiyO4∶Eu3+x红色荧光粉(0.05≤x≤0.30, 0≤y≤0.09), 讨论了助熔剂、温度等合成条件对Zn1-xMo1-ySiyO4∶Eu3+x荧光粉发光性质的影响。 当烧结温度为800 ℃时, 可以生成ZnMoO4纯相目标产物。 由于荧光粉的结晶度和粒径随烧结温度的升高而增大, 所以随着烧结温度的升高, 样品的发光强度有所提高; 当助熔剂Na2CO3的用量约为4%时的样品发射光的强度比未使用助熔剂时明显增强, 说明在此体系中, 当Eu3+取代Zn2+时, Na2CO3充当助熔剂的同时, Na+起到了电荷补偿作用。 荧光光谱实验显示Zn1-xMo1-ySiyO4∶Eu3+x能够被393和464 nm的紫外光激发, 在616 nm处发出强烈的红色荧光。 当Eu3+掺杂量约为20% mol时, Zn1-xMo0.97Si0.03O4∶Eu3+x荧光粉在616 nm处的发光强度达到最大。 在引入Si4+离子后能显著增强Zn1-xMoO4∶Eu3+x的发光强度, 组成为Zn0.80Mo0.97Si0.03O4∶Eu3+0.20样品(激发峰值为393 nm)的荧光强度要比Y2O2S∶Eu3+0.05荧光粉的发光强度强2倍。 所以这种荧光物质能够更好地适用于白光LED。  相似文献   

14.
采用高温固相法成功合成了一种可用于白光LED的Ca2Li2BiV3O12∶Eu3+新型红色荧光粉,使用X射线衍射仪和荧光分光光度计对合成样品进行了表征,研究了合成温度和Eu3+含量对合成样品相组成和发光性能的影响。结果表明,采用高温固相法在650~700 ℃能合成纯度较高、结晶度好的Ca2Li2BiV3O12∶Eu3+荧光粉,合成样品激发带覆盖200~400 nm,发射光谱的线状发射峰可归属于Eu3+5D07FJ(J= 1, 2, 3,4)特征锐线发射,Eu3+摩尔分数为14%时荧光粉的发光强度最大。  相似文献   

15.
采用溶胶-凝胶法合成了Y3Mg2AlSi2O12∶Ce3+荧光粉。用X射线粉晶衍射(XRD)仪对其进行了物相分析,用电子扫描电镜(SEM)观察了该荧光粉的形貌,同时测定了激发光谱及发射光谱。结果表明,Y3Mg2AlSi2O12∶Ce3+的晶体结构与Y3Al5O12(钇铝石榴石)一致,形貌也表现出等轴粒状的特点。发射谱为峰值位于580 nm处的宽带发射,是Ce3+的 4f65d1-4f7特征跃迁发射。激发谱表现为340 nm和468 nm的双峰带,可以被蓝光有效的激发。Ce3+的浓度对发光强度有明显的影响,当Ce3+的摩尔分数为0.06时,发光强度最大。最后考察了成分取代而导致的Y3Mg2AlSi2O12∶Ce3+的物相转变和对发光性能的影响。  相似文献   

16.
采用高温固相法制备了一种适于近紫外光激发,发射绿光的Ba2B2P2O10∶Eu2+材料,并研究了材料的发光性质.Ba2B2P2O10∶Eu2+材料的发射光谱为一峰值位于522 nm的非对称单峰宽谱|监测522 nm发射峰,所得激发光谱覆盖300~450 nm,主峰位于381 nm,为Eu2+的5d→4f跃迁特征激发谱带.利用van Uitert公式计算了Eu2+取代Ba2B2P2O10中Ba2+时所占晶体学格位,得出507 nm和542 nm发射峰分别归属于八配位和六配位的Eu2+发射.研究发现,Eu2+浓度对Ba2B2P2O10∶Eu2+材料的发射强度有影响,并判断出Eu2+在Ba2B2P2O10中发射的自身浓度猝灭机理为电偶极-电偶极相互作用.  相似文献   

17.
采用高温固相反应法制备了Ba1.97Ca1-x(B3O6)2∶Eu2+,Mnx2+(x=0,0.03,0.06,0.15)荧光粉,研究了其相组成与荧光特性。结果表明,样品具有单相Ba2Ca(B3O6)2晶体结构。Eu2+同时占据Ba2+格位和Ca2+格位。在317 nm波长的紫外光激发下,Eu2+辐射出峰值在450 nm附近的宽谱蓝光。通过能量传递作用,Mn2+辐射峰值为600 nm左右的宽谱红光。蓝光和红光叠加形成色坐标为(x=0.371,y=0.282)的近白光发射。样品的激发光谱分布在250~400 nm的波长范围,有望在紫外激发的白光LED中获得应用。  相似文献   

18.
白光LED作为新一代高效、环保型照明光源,被给予了极高的厚望。目前商业中白光LED主要采用蓝色LED芯片激发黄色YAG荧光粉的方式来实现白光,发光效率能达到理想值,但存在红色光谱区域缺失的问题,造成关键性指标显色指数偏低,限制了白光LED在橱窗照明、医疗照明和投影显示等高品质需求领域的应用。而目前研究较多有关红色荧光粉的光效与稳定性,对红色氮化物荧光粉的宽光谱设计研究尚有待深入探索。采用高温固相法成功制备出了高效宽光谱红色Ca0.992AlSiN3∶0.008Eu2+荧光粉,通过X射线衍射仪(XRD)和荧光光谱仪(PL)等测试技术对荧光粉样品的结晶度和发光性能进行了表征分析;基于第一性原理研究了CaAlSiN3∶Eu2+荧光粉的晶体结构和能带结构,研究了Eu2+掺杂CaAlSiN3发光过程中的能量跃迁机理,从其微观性质方面分析探讨了荧光粉的光谱性能;基于蒙特卡罗理论和遗传算法建立了白光封装模型,并结合CaAlSiN3∶Eu2+进行了白光LED应用封装和测试,研究了CaAlSiN3∶Eu2+荧光粉的封装样品的光色特性。研究结果表明,利用高温气压炉合成Ca0.992AlSiN3∶0.008Eu2+材料具有较高的结晶度,且微量的稀土元素Eu掺杂不会破坏其晶体结构,仍具有较好的稳定结构;通过PL光谱测试发现其具有极宽的激发光谱(200~600 nm),能被蓝光或者紫外LED芯片有效激发,当在450 nm波长激发下,荧光粉发出峰值为650 nm的发射光谱,光谱半高宽为91.4 nm,通过晶体的能带分布可知其发射光谱为5条高斯光谱曲线,归结于Eu2+的5d能级向4f能级跃迁, Ca0.937 5AlSiN3∶0.062 5Eu2+荧光粉的能量带隙为3.14 eV的间接带隙,主要是由Ca-3p, Eu-3d, N-2p, Al-3p, Si-3p电子态决定,使得材料发出红色光谱;通过建立白光光谱模型指导实现了白光LED应用封装,采用蓝光LED芯片与Ca0.992AlSiN3∶0.008Eu2+红色荧光粉、β-sialon绿色荧光粉进行组合封装,光谱测试结果与白光封装模型模拟值(Ra=93.93,R9=72.77,Tc=3 400 K)的趋势接近,且获得了高效高显色性的白光LED(η=101 lm·W-1,Ra=92.1,R9=74.9,Tc=3 464 K), Ca0.992AlSiN3∶0.008Eu2+所提供的红光光谱能够有效地提高白光LED的显色指数,同时在LED的发光效率、色温和物理化学稳定性等方面具有极高的价值,是一种很有应用前途的高品质照明白光LED用红色荧光粉材料。  相似文献   

19.
白光LED用Eu~(2+)离子激活含氮铝酸盐发光粉的制备   总被引:1,自引:1,他引:0       下载免费PDF全文
采用高温固相反应法制备Sr3Al2O6-3x/2Nx∶Eu2+发光材料。发光光谱分析表明,该材料在400~550nm可见光激发下,发射光谱为峰值波长为600 nm的宽带谱。XRD分析结果显示,Sr3Al2O6-3x/2Nx与Sr3Al2O6的晶体结构相同。研究了Eu2+离子浓度对材料发光性能的影响,结果表明随着Eu2+离子浓度的增加,材料的发光强度呈现出先增强后减弱的趋势,当Eu2+浓度为15%时,发光强度最大。根据Dexter理论,其浓度猝灭机理是电四极-电四极的相互作用。引入Ce3+作为敏化剂,样品的发光强度明显增强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号