首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The study of mosque acoustics, with regard to acoustical characteristics, sound quality for speech intelligibility, and other applicable acoustic criteria, has been largely neglected. In this study a background as to why mosques are designed as they are and how mosque design is influenced by worship considerations is given. In the study the acoustical characteristics of typically constructed contemporary mosques in Saudi Arabia have been investigated, employing a well-known impulse response. Extensive field measurements were taken in 21 representative mosques of different sizes and architectural features in order to characterize their acoustical quality and to identify the impact of air conditioning, ceiling fans, and sound reinforcement systems on their acoustics. Objective room-acoustic indicators such as reverberation time (RT) and clarity (C50) were measured. Background noise (BN) was assessed with and without the operation of air conditioning and fans. The speech transmission index (STI) was also evaluated with and without the operation of existing sound reinforcement systems. The existence of acoustical deficiencies was confirmed and quantified. The study, in addition to describing mosque acoustics, compares design goals to results obtained in practice and suggests acoustical target values for mosque design. The results show that acoustical quality in the investigated mosques deviates from optimum conditions when unoccupied, but is much better in the occupied condition.  相似文献   

2.
The results of an acoustic survey carried out in a group of Italian churches differing in style, typology, and location were used in order to study how the acoustic energy varies inside this kind of space. The effect of different architectural elements on sound propagation was investigated by means of three-dimensional impulse responses measured using a B-format microphone with sweep signals. Side chapels, columns, and trussed roofs appeared to scatter the reflections, so that the purely diffuse exponential sound decay begins after a time interval which grows with the source-receiver distance and with the complexity of the church. The results of the measurements were then compared with predictions given by existing theoretical models to check their accuracy. In particular a model previously proposed by the authors for a specific type of Romanesque churches was further refined taking into account the new findings and making some simplifications. Its application to the wider sample of churches under analysis showed that strength, clarity, and center time can be predicted with reasonable accuracy.  相似文献   

3.
Acoustical measurements based on impulse responses have been made in a Protestant and a Catholic church in Hong Kong. Analysis has concentrated on reverberation time, early decay time and C80, the early-to-late ratio, as well as integrated decays. The measured results have been compared with predictions according to two different theoretical room acoustic models: a model for a single diffuse space and one for a set of coupled-rooms. The comparison has shown that treating the churches as a series of coupled spaces is more valid. However the clarity, C80, at different receiver positions was found to be either under- or over-estimated by the classical coupled-room model. Following this observation, a delayed coupled-room model was developed in the hope of achieving more accurate predictions. In this model, the initial condition under the impulse excitation was modified by introducing a time delay for sound propagated from the source to achieve diffuse sound fields in each subspace. The predicted results of the coupled-room model agree well with the measured results.  相似文献   

4.
In 1965, the Catholic Church liturgy changed to allow priests to face the congregation. Whereas Church tradition, teaching, and participation have been much discussed with respect to priest orientation at Mass, the acoustical changes in this regard have not yet been examined scientifically. To discuss acoustic desired within churches, it is necessary to know the acoustical characteristics appropriate for each phase of the liturgy. In this study, acoustic measurements were taken at various source locations and directions using both old and new liturgies performed in Japanese churches. A directional loudspeaker was used as the source to provide vocal and organ acoustic fields, and impulse responses were measured. Various acoustical parameters such as reverberation time and early decay time were analyzed. The speech transmission index was higher for the new Catholic liturgy, suggesting that the change in liturgy has improved speech intelligibility. Moreover, the interaural cross-correlation coefficient and early lateral energy fraction were higher and lower, respectively, suggesting that the change in liturgy has made the apparent source width smaller.  相似文献   

5.
It is known that the sound field in a long space is not diffuse, and that the classic theory of room acoustics is not applicable. A theoretical model is developed for the prediction of reverberation time and speech transmission index in rectangular long enclosures, such as corridors and train stations, where the acoustic quality is important for speech. The model is based on an image-source method, and both acoustically hard and impedance boundaries are investigated. An approximate analytical solution is used to predict the frequency response of the sound field. The reverberation time is determined from the decay curve which is computed by a reverse-time integration of the squared impulse response. The angle-dependence of reflection coefficients of the boundaries and the change of phase upon reflection are incorporated in this model. Due to the relatively long distance of sound propagation, the effect of atmospheric absorption is also considered. Measurements of reverberation time and speech transmission index taken from a real tunnel, a corridor, and a model tunnel are presented. The theoretical predictions are found to agree well with the experimental data. An application of the proposed model has been suggested.  相似文献   

6.
Marc Aretz 《Applied Acoustics》2009,70(8):1099-258
Sound strength and reverberation time measurements have been carried out in six small concert halls in Cambridge, UK. The sound strength G is a measure of the physical sound level in a concert hall and is closely related to the subjective sensation of loudness. It compares integrated impulse responses at a point in the measured room with that measured at ten metres distance in the free field.The aim of the measurements is to investigate the acoustic characteristics of the halls concerning sound strength and reverberation time. Furthermore the effect of the variable acoustics in the halls on these parameters is discussed in this paper. Especially for bigger ensembles it is often desirable to reduce the sound level in a small concert hall. The measurement results show that for a fixed hall volume, this can primarily be achieved by decreasing the reverberation time in the hall. However, with regard to the sound quality of a hall and the recommended reverberation times for chamber music, reverberation time cannot be reduced by an arbitrary extent. Therefore reverberation time and strength have to be balanced very carefully in order to obtain sufficient reverberation whilst at the same time avoiding excessive loudness. Finally the measured strength levels are compared to values derived from traditional and revised theory [Barron M, Lee L-J. Energy relations in concert auditoriums. J Acoust Soc Am 1988;84(2):618-28] on strength calculations in order to assess the accuracy of the theory for small chamber music halls. Possible reasons for the low measured strength levels observed are discussed with reference to related design features and objective acoustic parameters.  相似文献   

7.
Detailed acoustical measurements were made in 41 working elementary school classrooms near Ottawa, Canada to obtain more representative and more accurate indications of the acoustical quality of conditions for speech communication during actual teaching activities. This paper describes the room acoustics characteristics and noise environment of 27 traditional rectangular classrooms from the 41 measured rooms. The purpose of the work was to better understand how to improve speech communication between teachers and students. The study found, that on average, the students experienced: teacher speech levels of 60.4 dB A, noise levels of 49.1 dB A, and a mean speech-to-noise ratio of 11 dB A during teaching activities. The mean reverberation time in the occupied classrooms was 0.41 s, which was 10% less than in the unoccupied rooms. The reverberation time measurements were used to determine the average absorption added by each student. Detailed analyses of early and late-arriving speech sounds showed these sound levels could be predicted quite accurately and suggest improved approaches to room acoustics design.  相似文献   

8.
In several auditoria, it has been observed that the reverberation time is longer than expected and that the cause is a horizontal reverberant field established in the region near the ceiling, a field which is remote from the sound absorbing audience. This has been observed in the Boston Symphony Hall, Massachusetts, and the Stadthalle Göttingen, Germany. Subjective remarks on their acoustics suggest that there are no unfavourable comments linked to the secondary sound field. Two acoustic scale models are considered here. In a generic rectangular concert hall model, the walls and ceiling contained openings in which either plane or scattering panels could be placed. With plane panels, the model reverberation time (RT) was measured as 53% higher than the Sabine prediction (frequency 500/1000 Hz), compared with 8% higher with scattering panels. The second model of a 300 seat lecture theatre with a 6 m or 8 m high ceiling had raked seating. In this case, the amount of absorption in the model was increased until the point was reached where speech had acceptable intelligibility, with the early energy fraction, D ? 0.5. For this acceptable speech condition with the 6 m ceiling, the measured mid-frequency T15 was 1.47 s, whereas the Sabine predicted RT was 1.06 s. The sound decay was basically non-linear with T30 > T15 > EDT. Exploiting a high-level horizontal reverberant field offers the possibility of acoustics that are better adapted as suitable for both speech and unamplified music, without any physical change in the auditorium. Using secondary reverberation in an auditorium for a wide variety of music might also be beneficial.  相似文献   

9.
Extensive objective energy-based parameters have been measured in 12 Mudejar-Gothic churches in the south of Spain. Measurements took place in unoccupied churches according to the ISO-3382 standard. Monoaural objective measures in the 125-4000 Hz frequency range and in their spatial distributions were obtained. Acoustic parameters: clarity C80, definition D50, sound strength G and center time Ts have been deduced using impulse response analysis through a maximum length sequence measurement system in each church. These parameters spectrally averaged according to the most extended criteria in auditoria in order to consider acoustic quality were studied as a function of source-receiver distance. The experimental results were compared with predictions given by classical and other existing theoretical models proposed for concert halls and churches. An analytical semi-empirical model based on the measured values of the C80 parameter is proposed in this work for these spaces. The good agreement between predicted values and experimental data for definition, sound strength, and center time in the churches analyzed shows that the model can be used for design predictions and other purposes with reasonable accuracy.  相似文献   

10.
The paper presents the acoustics analysis of three different enclosed spaces. These spaces (rooms) have different geometrical shapes and sizes and serve for different purposes. The early decay time, reverberation time, clarity and center time are evaluated with Dirac, WinMLS, Aurora and Caracad software using simple, low-cost equipment. The listed acoustic parameters were determined using linear sine sweep and impulsive sources. Comparisons between experimental measurements, simulations and analytic results were done. The room impulse response measurement proved to be the most reliable method to evaluate the properties of different rooms even if the measurements are perturbed by non-idealities of the low-cost equipment.  相似文献   

11.
To improve the acoustic treatment of facings and provide appropriate solutions for noise control at workplace, it is necessary to develop methods of acoustic characterization of the walls in industrial halls. Sound absorption coefficient measurement in industrial rooms is however quite a difficult task because of the partially reverberant conditions. This work describes the measurement of the sound absorption coefficient of flat panels subject to small angle sound incidence, in an industrial hall using an experimental device equipped with an acoustic array. The directivity of this array has been optimized so that the major part of the received acoustic energy would come from one portion only of the investigated facing, this, in turn attenuating the reflected beams due to the reverberation. This new device includes an impulse sound source targeting the panels. The present article focuses mainly on the sound source design and implementation. It also describes some sound absorption measurements carried in a semi-anechoic chamber and in an industrial hall in order to examine the performance of the device. Sound absorption coefficients of several standard liners obtained through this device have been compared to those resulted from the two microphone technique.  相似文献   

12.
This paper presents the results of new studies based on speech intelligibility tests in simulated sound fields and analyses of impulse response measurements in rooms used for speech communication. The speech intelligibility test results confirm the importance of early reflections for achieving good conditions for speech in rooms. The addition of early reflections increased the effective signal-to-noise ratio and related speech intelligibility scores for both impaired and nonimpaired listeners. The new results also show that for common conditions where the direct sound is reduced, it is only possible to understand speech because of the presence of early reflections. Analyses of measured impulse responses in rooms intended for speech show that early reflections can increase the effective signal-to-noise ratio by up to 9 dB. A room acoustics computer model is used to demonstrate that the relative importance of early reflections can be influenced by the room acoustics design.  相似文献   

13.
Speech intelligibility in these places of worship has been assessed through a study of the spatial distribution of the RASTI and the energy-based acoustic parameters, clarity for speech, C50 and definition, D50. Parameters have been obtained by intensity-modulated stationary noise (IMN) signals and by maximum length sequence (MLS) signals in order to obtain the impulse responses. The 12 churches analysed correspond to the same highly characteristic architectural typology of southern Spain, and measurements were taken without occupancy. A full correlation between those RASTI, C50 and D50 parameters produced by different experimental techniques has been carried out. This correlation has lead to a more profound characterization of these churches from this functional point of view, together with an analysis of the capability of each parameter to take into account the different aspects in the degradation of the signal from speaker to listener in a room, and has also lead to a study of the subjective range of qualification of the energy-based acoustic parameters. Simultaneously, a comparison has been made of the values of those variables with those expected from a semi-empirical model deduced for these religious spaces.  相似文献   

14.
厅堂声学测量中不同激励声源的比较   总被引:3,自引:0,他引:3       下载免费PDF全文
孟子厚 《应用声学》2005,24(1):19-23
基於脉冲响应积分的音乐厅和剧院观众厅声学特性的测量目前有三种使用不同激励声源的测试方法:人工脉冲声源、伪随机噪声序列(MLS)、以及用正弦扫频信号。这些技术各有其优缺点,在实际应用中为了方便根据具体情况选择不同的激励声源,通过在一个音乐厅现场的实测数据比较丁三种声源的实测结果,发现对混响时间测量三种不同的激励声源给出的结果基本一致,但是对明晰度和一些其他的指标,脉冲声源给出的结果与用MLS和扫频信号给出的结果有较明显的差别。对实际中如何选择具体的技术也做了建议。  相似文献   

15.
The methods investigated for the room volume estimation are based on geometrical acoustics, eigenmode, and diffuse field models and no data other than the room impulse response are available. The measurements include several receiver positions in a total of 12 rooms of vastly different sizes and acoustic characteristics. The limitations in identifying the pivotal specular reflections of the geometrical acoustics model in measured room impulse responses are examined both theoretically and experimentally. The eigenmode method uses the theoretical expression for the Schroeder frequency and the difficulty of accurately estimating this frequency from the varying statistics of the room transfer function is highlighted. Reliable results are only obtained with the diffuse field model and a part of the observed variance in the experimental results is explained by theoretical expressions for the standard deviation of the reverberant sound pressure and the reverberation time. The limitations due to source and receiver directivity are discussed and a simple volume estimation method based on an approximate relationship with the reverberation time is also presented.  相似文献   

16.
The paper describes the results of research aimed at investigating the preferred subjective listening conditions inside churches. The effect of different musical motifs (spanning Gregorian chants to symphonic music) was investigated and regression analysis was performed in order to point out the relationship between subjective ratings and acoustical parameters. In order to present realistic listening conditions to the subjects a small subset of nine churches was selected among a larger set of acoustic data collected in several Italian churches during a widespread on-site survey. The subset represented different architectural styles and shapes, and was characterized by average listening conditions. For each church a single source–receiver combination with fixed relative positions was chosen. Measured binaural impulse responses were cross-talk cancelled and then convolved with five anechoic motifs. Paired comparisons were finally performed, asking a trained panel of subjects their preference. Factor analysis pointed out a substantially common underlying pattern characterizing subjective responses. The results show that preferred listening conditions vary as a function of the musical motif, depending on early decay time for choral music and on a combination of initial time delay and lateral energy for instrumental music.  相似文献   

17.
This paper compares two methods for extracting room acoustic parameters from reverberated speech and music. An approach which uses statistical machine learning, previously developed for speech, is extended to work with music. For speech, reverberation time estimations are within a perceptual difference limen of the true value. For music, virtually all early decay time estimations are within a difference limen of the true value. The estimation accuracy is not good enough in other cases due to differences between the simulated data set used to develop the empirical model and real rooms. The second method carries out a maximum likelihood estimation on decay phases at the end of notes or speech utterances. This paper extends the method to estimate parameters relating to the balance of early and late energies in the impulse response. For reverberation time and speech, the method provides estimations which are within the perceptual difference limen of the true value. For other parameters such as clarity, the estimations are not sufficiently accurate due to the natural reverberance of the excitation signals. Speech is a better test signal than music because of the greater periods of silence in the signal, although music is needed for low frequency measurement.  相似文献   

18.
Speech intelligibility metrics that take into account sound reflections in the room and the background noise have been compared, assuming diffuse sound field. Under this assumption, sound decays exponentially with a decay constant inversely proportional to reverberation time. Analytical formulas were obtained for each speech intelligibility metric providing a common basis for comparison. These formulas were applied to three sizes of rectangular classrooms. The sound source was the human voice without amplification, and background noise was taken into account by a noise-to-signal ratio. Correlations between the metrics and speech intelligibility are presented and applied to the classrooms under study. Relationships between some speech intelligibility metrics were also established. For each noise-to-signal ratio, the value of each speech intelligibility metric is maximized for a specific reverberation time. For quiet classrooms, the reverberation time that maximizes these speech intelligibility metrics is between 0.1 and 0.3 s. Speech intelligibility of 100% is possible with reverberation times up to 0.4-0.5 s and this is the recommended range. The study suggests "ideal" and "acceptable" maximum background-noise level for classrooms of 25 and 20 dB, respectively, below the voice level at 1 m in front of the talker.  相似文献   

19.
Cochlear implant users report difficulty understanding speech in both noisy and reverberant environments. Electric-acoustic stimulation (EAS) is known to improve speech intelligibility in noise. However, little is known about the potential benefits of EAS in reverberation, or about how such benefits relate to those observed in noise. The present study used EAS simulations to examine these questions. Sentences were convolved with impulse responses from a model of a room whose estimated reverberation times were varied from 0 to 1 sec. These reverberated stimuli were then vocoded to simulate electric stimulation, or presented as a combination of vocoder plus low-pass filtered speech to simulate EAS. Monaural sentence recognition scores were measured in two conditions: reverberated speech and speech in a reverberated noise. The long-term spectrum and amplitude modulations of the noise were equated to the reverberant energy, allowing a comparison of the effects of the interferer (speech vs noise). Results indicate that, at least in simulation, (1) EAS provides significant benefit in reverberation; (2) the benefits of EAS in reverberation may be underestimated by those in a comparable noise; and (3) the EAS benefit in reverberation likely arises from partially preserved cues in this background accessible via the low-frequency acoustic component.  相似文献   

20.
Since the classical room acoustics can not be used for long enclosures due to the inhomogeneous sound field, much work has been carried out recently to investigate the sound propagation in long enclosures, which are helpful to the acoustic design of practical long enclosures, such as the high-speed railway tunnels. However, most of these works focuses on the straight long enclosures without branches or with one branch. In this paper, the effects of the multiple branches on sound propagation of long enclosures are studied. The sound pressure level (SPL) attenuation, early decay time (EDT), and reverberation time (T30) of long enclosures with multiple branches have been investigated by physical scale models based acoustic experiments. Several interesting results have been obtained concerning the sound propagation of long enclosures with multiple branches. It shows that the sound field of long enclosures with multiple branches is more complex and inhomogeneous than that of the long enclosures without branches or with one branch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号