首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The results of an acoustic survey carried out in a group of Italian churches differing in style, typology, and location were used in order to study how the acoustic energy varies inside this kind of space. The effect of different architectural elements on sound propagation was investigated by means of three-dimensional impulse responses measured using a B-format microphone with sweep signals. Side chapels, columns, and trussed roofs appeared to scatter the reflections, so that the purely diffuse exponential sound decay begins after a time interval which grows with the source-receiver distance and with the complexity of the church. The results of the measurements were then compared with predictions given by existing theoretical models to check their accuracy. In particular a model previously proposed by the authors for a specific type of Romanesque churches was further refined taking into account the new findings and making some simplifications. Its application to the wider sample of churches under analysis showed that strength, clarity, and center time can be predicted with reasonable accuracy.  相似文献   

2.
Extensive objective energy-based parameters have been measured in 12 Mudejar-Gothic churches in the south of Spain. Measurements took place in unoccupied churches according to the ISO-3382 standard. Monoaural objective measures in the 125-4000 Hz frequency range and in their spatial distributions were obtained. Acoustic parameters: clarity C80, definition D50, sound strength G and center time Ts have been deduced using impulse response analysis through a maximum length sequence measurement system in each church. These parameters spectrally averaged according to the most extended criteria in auditoria in order to consider acoustic quality were studied as a function of source-receiver distance. The experimental results were compared with predictions given by classical and other existing theoretical models proposed for concert halls and churches. An analytical semi-empirical model based on the measured values of the C80 parameter is proposed in this work for these spaces. The good agreement between predicted values and experimental data for definition, sound strength, and center time in the churches analyzed shows that the model can be used for design predictions and other purposes with reasonable accuracy.  相似文献   

3.
An acoustical radiosity model was evaluated for how it performs in predicting real room sound fields. This was done by comparing radiosity predictions with experimental results for three existing rooms--a squash court, a classroom, and an office. Radiosity predictions were also compared with those by ray tracing--a "reference" prediction model--for both specular and diffuse surface reflection. Comparisons were made for detailed and discretized echograms, sound-decay curves, sound-propagation curves, and the variations with frequency of four room-acoustical parameters--EDT, RT, D50, and C80. In general, radiosity and diffuse ray tracing gave very similar predictions. Predictions by specular ray tracing were often very different. Radiosity agreed well with experiment in some cases, less well in others. Definitive conclusions regarding the accuracy with which the rooms were modeled, or the accuracy of the radiosity approach, were difficult to draw. The results suggest that radiosity predicts room sound fields with some accuracy, at least as well as diffuse ray tracing and, in general, better than specular ray tracing. The predictions of detailed echograms are less accurate, those of derived room-acoustical parameters more accurate. The results underline the need to develop experimental methods for accurately characterizing the absorptive and reflective characteristics of room surfaces, possible including phase.  相似文献   

4.
Y.J. Chu  C.M. Mak  X.J. Qiu 《Applied Acoustics》2008,69(12):1343-1349
Indoor barriers are now widely used for sound insulation. This paper examines the performance of indoor barriers in the low-medium frequency range and analyses the interaction between different natural modes of a room-barrier-room system. Morse proposed a theoretical model to calculate the sound field in a coupled-room, but this model neglects the surface integral of the boundary values of sound pressure. To estimate the performance of a barrier in an indoor environment, an analytical model is proposed that modifies the Green’s function for a non-rigid boundary enclosure and approximates the surface integral by a pre-estimated sound pressure based on Morse’s model. An additional approximation has been made in the proposed model to neglect the coupling area in the calculation of the surface integral. The proposed model used to predict the insertion loss of the barrier is verified by the experimental results using a 1:5 scale model. The predicted results agree well with the measured results at lower frequencies.  相似文献   

5.
By varying the sound-absorption treatments in a simulated classroom, experimental results were compared with analytical and computer predictions of reverberation time. Analytical predictions were made with different absorption exponents, which are the result of different weighting procedures involving room surface areas and the sound-absorption coefficients. Sound scattering was found to influence measured reverberation times. With the amount of sound scattering provided, more accurate analytical predictions were obtained with absorption exponents that give reverberation times longer than those obtained with the Sabine absorption exponent, which consistently underpredicted reverberation times. However, none of the absorption exponents could be singled out as more adequate because of similar average accuracy. Computer predictions of reverberation time were accomplished with two commercially available ray-based programs, RAYNOISE 3.0 and ODEON 2.6, with specular and calibrated diffuse reflection procedures. Neither type of procedure, in either program, was more accurate than the best analytical predictions. With RAYNOISE, neither the specular nor the calibrated diffuse reflection procedure could be singled out as more adequate. For ODEON, the calibrated diffuse reflection procedure gave consistently more accurate predictions than its specular reflection procedure, with the best accuracy of the computer predictions.  相似文献   

6.
It is known that the sound field in a long space is not diffuse, and that the classic theory of room acoustics is not applicable. A theoretical model is developed for the prediction of reverberation time and speech transmission index in rectangular long enclosures, such as corridors and train stations, where the acoustic quality is important for speech. The model is based on an image-source method, and both acoustically hard and impedance boundaries are investigated. An approximate analytical solution is used to predict the frequency response of the sound field. The reverberation time is determined from the decay curve which is computed by a reverse-time integration of the squared impulse response. The angle-dependence of reflection coefficients of the boundaries and the change of phase upon reflection are incorporated in this model. Due to the relatively long distance of sound propagation, the effect of atmospheric absorption is also considered. Measurements of reverberation time and speech transmission index taken from a real tunnel, a corridor, and a model tunnel are presented. The theoretical predictions are found to agree well with the experimental data. An application of the proposed model has been suggested.  相似文献   

7.
The purposes of this paper are to clarify the relation between listener envelopment (LEV) and two physical factors, namely, early-to-late sound level C80 and directional late energy ratios (DLRs), and to demonstrate the significance of evaluating LEV using C80 and DLRs. Firstly, two psychological experiments are performed. In the first experiment, the results show that the previous findings about the effects of late reflections from lateral, overhead, and behind the listener on LEV are valid when they also consist of plural directional energy components, as are found in real sound fields. In the second experiment, the relational equation among LEV, C80, and DLRs is derived from results when the physical factors are simultaneously varied. Secondly, psychological scores for LEV are calculated in actual halls by applying measured values for C80 and DLRs to the equation. The results show that the differences in LEV among different seating positions and in the spatial uniformity of LEV among different halls are expected to be significantly large depending on the values of C80 and DLRs. This suggests the significance of evaluating LEV by means of C80 and DLRs.  相似文献   

8.
The methods investigated for the room volume estimation are based on geometrical acoustics, eigenmode, and diffuse field models and no data other than the room impulse response are available. The measurements include several receiver positions in a total of 12 rooms of vastly different sizes and acoustic characteristics. The limitations in identifying the pivotal specular reflections of the geometrical acoustics model in measured room impulse responses are examined both theoretically and experimentally. The eigenmode method uses the theoretical expression for the Schroeder frequency and the difficulty of accurately estimating this frequency from the varying statistics of the room transfer function is highlighted. Reliable results are only obtained with the diffuse field model and a part of the observed variance in the experimental results is explained by theoretical expressions for the standard deviation of the reverberant sound pressure and the reverberation time. The limitations due to source and receiver directivity are discussed and a simple volume estimation method based on an approximate relationship with the reverberation time is also presented.  相似文献   

9.
In this paper, a modification of the diffusion model for room acoustics is proposed to account for sound transmission between two rooms, a source room and an adjacent room, which are coupled through a partition wall. A system of two diffusion equations, one for each room, together with a set of two boundary conditions, one for the partition wall and one for the other walls of a room, is obtained and numerically solved. The modified diffusion model is validated by numerical comparisons with the statistical theory for several coupled-room configurations by varying the coupling area surface, the absorption coefficient of each room, and the volume of the adjacent room. An experimental comparison is also carried out for two coupled classrooms. The modified diffusion model results agree very well with both the statistical theory and the experimental data. The diffusion model can then be used as an alternative to the statistical theory, especially when the statistical theory is not applicable, that is, when the reverberant sound field is not diffuse. Moreover, the diffusion model allows the prediction of the spatial distribution of sound energy within each coupled room, while the statistical theory gives only one sound level for each room.  相似文献   

10.
Sound quality research of urban squares used for open-air (rock) concerts is very scarce. In contrast to the study of (classical) concert halls, little is known about useful design parameters. For the design of the amplification system, the sound engineer currently often takes into account the desired sound pressure level only.In this study, the ability of existing room acoustical parameters to characterize urban squares acoustically is investigated. An independent parameter set is identified for specific use on such squares. Besides the distribution of the sound pressure level over the square, different impulse response related parameters such as the clarity, center time, reverberation time and bass ratio were considered. In addition, binaural measures were included to measure qualities related to human spatial hearing.This study is based on a measurement campaign, performed at five squares in Belgium before and during life rock concerts. Special attention was paid to the signal processing methodology, given the significant amount of environmental noise often found at such squares during measurements. The variation of these parameters is investigated in relation to the square geometry, the amplification set-up and the presence of delay-lines. Parameters like C80, T30, IACCE3/L3 and ΔLeq,A/C were shown to be very useful when characterizing the sound field at urban squares.  相似文献   

11.
Propulsion pellets of different metal/salt (Zn/CaCO3) composition have been prepared. The impulse imparted to the pellet by the laser has been measured using two different methods: a torsion pendulum and a piezoelectric sensor. The dependence of the coupling coefficient, Cm, on the composition of the solid binary propellants in ablative laser propulsion has been investigated under different experimental conditions: in vacuum and at atmospheric pressure as well as with two different wavelengths, IR and UV. The composition of the Zn/CaCO3 propellant mixture that optimizes the coupling coefficient, Cm, has been determined.  相似文献   

12.
A new empirical model has been developed by the authors to predict the flow resistivity, acoustic impedance and sound absorption coefficient of polyester fibre materials. The parameters of the model have been adjusted to best fit the values of airflow resistivity and sound absorption coefficient measured over a set of 38 samples. Calculated results are compared with normal incidence measurements carried out using two different techniques: the transfer-function method in an impedance tube (ISO 10534-2) and the free-field impulse response method (ISO 13472-1). Measurements performed on polyester fibre materials with different density and thickness values, and diameter ranging from 18 to 48 μm, are in good agreement with the predictions of the new model. It is concluded that the new model can predict the basic acoustic properties of common polyester fibre materials with any practical combination of thickness and density2.  相似文献   

13.
This paper examines the accuracy of the speech transmission index (STI) calculated from the reverberation time (T) and signal-to-noise ratio (LSN) of enclosed spaces. Differences between measured and predicted STIs have been analysed in two rooms (reverberant vs. absorbent), for a wide range of absorption conditions and signal-to-noise ratios (sixteen tests). The STI was measured using maximum length sequence analysis and predictions were calculated using either measured or predicted values of T and LSN, the latter assuming diffuse sound field conditions. The results obtained for all the conditions tested showed that STI predictions based on T and LSN tend to underestimate the STI, with differences between measured and predicted STIs always lower than 0.1 (on a 0.0–1.0 scale), and on average lower than 0.06. According to previous research, these differences are noticeable and therefore non-negligible, as 0.03 is the just noticeable difference in STI. The use of either measured or predicted values of T and LSN provided similar STI predictions (i.e. non-noticeable changes), with differences between predictions that are on average lower than 0.03 for the absorbent room, and lower than 0.01 for the reverberant room.  相似文献   

14.
祝培生  冯伟  朱彤 《应用声学》2013,32(5):375-382
当使用音质仿真软件ODEON进行模拟时,建模精细程度对一些音质参量的影响较大,与散射系数取值的关系也非常复杂。本文在对比ODEON9.0与以前版本模拟算法区别的基础上,使用不同精细程度的模型以及不同散射系数对多个代表性厅堂进行模拟计算分析,验证了合适精细程度的模型可以获得可靠模拟结果的结论,并探讨了模型精细程度对混响时间T30、声能比C80的影响以及与散射系数取值的关系。  相似文献   

15.
In this article, we present an experimental study of the effect of conical section nozzles coupled to solid targets on laser ablation propulsion. The impulse produced on the target by laser ablation was measured in terms of the coupling coefficient C m using a piezoelectric (PZT) sensor. The standard deviation of the PZT signal was used as an estimator of the transferred impulse. The ablation was performed with a TEA CO2 laser at room temperature and atmospheric pressure. The targets were pellets of 90/10 % w/w Zn/CaCO3 concentration ratio. Aluminum nozzles with conical section were coupled to these propellant pellets. A comparative study of the variation of C m using nozzles of different inlet and outlet diameters of the ejected material as well as of different heights was made. The results demonstrate that for the pellet composition analyzed, as the nozzle’s height increases and its diameter decreases improvements up to 250 % respect to the target without nozzle are obtained. These are promising results for the potential development of laser ablation microthrusters.  相似文献   

16.
Recent papers have discussed the optimal reverberation times in classrooms for speech intelligibility, based on the assumption of a diffuse sound field. Here this question was investigated for more ‘typical’ classrooms with non-diffuse sound fields. A ray-tracing model was modified to predict speech-intelligibility metric U50. It was used to predict U50 in various classroom configurations for various values of the room absorption, allowing the optimal absorption (that predicting the highest U50)—and the corresponding optimal reverberation time—to be identified in each case. The range of absorptions and reverberation times corresponding to high speech intelligibility were also predicted in each case. Optimal reverberation times were also predicted from the optimal surface-absorption coefficients using Sabine and Eyring versions of diffuse-field theory, and using the diffuse-field expression of Hodgson and Nosal. In order to validate the ray-tracing model, predictions were made for three classrooms with highly diffuse sound fields; these were compared to values obtained by the diffuse-field models, with good agreement. The methods were then applied to three ‘typical’ classrooms with non-diffuse fields. Optimal reverberation times increased with room volume and noise level to over 1 s. The accuracy of the Hodgson and Nosal expression varied with classroom size and noise level. The optimal average surface-absorption coefficients varied from 0.19 to 0.83 in the different classroom configurations tested. High speech intelligibility was, in general, predicted for a wide range of coefficients, but could not be obtained in a large, noisy classroom.  相似文献   

17.
厅堂声学测量中不同激励声源的比较   总被引:3,自引:0,他引:3       下载免费PDF全文
孟子厚 《应用声学》2005,24(1):19-23
基於脉冲响应积分的音乐厅和剧院观众厅声学特性的测量目前有三种使用不同激励声源的测试方法:人工脉冲声源、伪随机噪声序列(MLS)、以及用正弦扫频信号。这些技术各有其优缺点,在实际应用中为了方便根据具体情况选择不同的激励声源,通过在一个音乐厅现场的实测数据比较丁三种声源的实测结果,发现对混响时间测量三种不同的激励声源给出的结果基本一致,但是对明晰度和一些其他的指标,脉冲声源给出的结果与用MLS和扫频信号给出的结果有较明显的差别。对实际中如何选择具体的技术也做了建议。  相似文献   

18.
Long enclosures are spaces with nondiffuse sound fields, for which the classical theory of acoustics is not appropriate. Thus, the modeling of the sound field in a long enclosure is very different from the prediction of the behavior of sound in a diffuse space. Ray-tracing computer models have been developed for the prediction of the sound field in long enclosures, with particular reference to spaces such as underground stations which are generally long spaces of rectangular or curved cross section. This paper describes the development of a model for use in underground stations of rectangular cross section. The model predicts the sound-pressure level, early decay time, clarity index, and definition at receiver points along the enclosure. The model also calculates the value of the speech transmission index at individual points. Measurements of all parameters have been made in a station of rectangular cross section, and compared with the predicted values. The predictions of all parameters show good agreement with measurements at all frequencies, particularly in the far field of the sound source, and the trends in the behavior of the parameters along the enclosure have been correctly predicted.  相似文献   

19.
By systematically varying the amount of sound absorption, and the location of the sound-absorbing material in a simulated classroom, it was possible to assess the accuracy of the prediction of speech metrics in quite simple acoustical environments. Predictions of speech level, early-to-late sound ratios (C50) and speech transmission index (STI) values were obtained analytically and with two hybrid ray-based computer programs, RAYNOISE 3.0 and ODEON 4.1. The RAYNOISE predictions were accomplished with a purely specular reflection model and also with a calibrated diffuse reflection model. ODEON uses a parameter called transition order, TO, to change the reflection procedure from purely specular to diffuse for reflections that have orders higher than TO. A parametric study was conducted to determine the best transition order for the ODEON prediction of speech metrics. It was found that the analytical predictions of speech level and C50 were on average accurate to about 1 just-noticeable difference (jnd), whereas the analytical predictions of STI were on average within 2 jnd's. ODEON predictions of speech level, C50 and STI were on average within 2 jnd's. RAYNOISE predictions of C50 and STI with the specular model were on average within 2 jnd's. However, the RAYNOISE predictions of speech level, with both types of reflection models, and the RAYNOISE predictions of C50 and STI with the diffuse model had average errors greater than 2 jnd's. The effects of the sound-absorption treatments on the measured speech metric values are also discussed.  相似文献   

20.
Potentially sand panels could be used as novel sound absorbing materials that are fire resistant, environmentally friendly, mechanically strong and have good durability. However, the performance of sand panels as sound absorbers has not yet been studied. Results of measurements in a reverberation chamber of the random-incidence absorption coefficients of 13 different sand panel compositions and configurations with air gaps are reported. Also the flow resistivities and bulk densities have been measured. The results prove that sand panels could offer effective and wide-band acoustic absorption. As is the case with conventional sound absorbing materials, adding an air space is found to be the most effective way to widen the absorption bands and improve the overall absorption. Comparisons of the measured sand panel absorption data with predictions of the Delany and Bazley and Voronina models reveal that, while neither model is very accurate, the former gives more accurate predictions especially for sand panels with lower flow resistivity and smaller thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号