首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Thermoelastic wave induced by pulsed laser heating   总被引:6,自引:0,他引:6  
In this work, a generalized solution for the thermoelastic plane wave in a semi-infinite solid induced by pulsed laser heating is developed. The solution takes into account the non-Fourier effect in heat conduction and the coupling effect between temperature and strain rate, which play significant roles in ultrashort pulsed laser heating. Based on this solution, calculations are conducted to study stress waves induced by nano-, pico-, and femtosecond laser pulses. It is found that with the same maximum surface temperature increase, a shorter pulsed laser induces a much stronger stress wave. The non-Fourier effect causes a higher surface temperature increase, but a weaker stress wave. Also, for the first time, it is found that a second stress wave is formed and propagates with the same speed as the thermal wave. The surface displacement accompanying thermal expansion shows a substantial time delay to the femtosecond laser pulse. On the contrary, surface displacement and heating occur simultaneously in nano- and picosecond laser heating. In femtosecond laser heating, results show that the coupling effect strongly attenuates the stress wave and extends the duration of the stress wave. This may explain the minimal damage in ultrashort laser materials processing. Received: 23 May 2000 / Accepted: 26 May 2000 / Published online: 20 September 2000  相似文献   

2.
The effect of elasticity of the flexible walls on the MHD peristaltic flow of a Newtonian fluid in a two-dimensional porous channel with heat transfer has been studied under the assumptions of long-wavelength and low-Reynolds number. The analytical solution has been obtained for the stream function, temperature and heat transfer coefficient. The effect of various emerging parameters on the flow characteristics are shown and discussed with the help of graphs. The numerical results show that the trapped bolus increases in size and more trapped bolus appears with increasing permeability parameter, elastic tension and mass characterizing parameters but decreases for large values of Hartmann number.  相似文献   

3.
We present a theoretical analysis for fully developed convective beat transfer in a circular tube for power law fluids by assuming that the thermal diffusivity is a function of temperature gradient. The analytical eolution is obtained and the heat transfer behaviour is investigated under a constant heat flux boundary condition. It is shown that the Nusselt number strongly depends on the value of power law index n. The Nusselt number sharply decreases in the range of 0 〈 n 〈 0.1. However, for n 〉 0.5, the Nusselt number decreases monotonically with the increasing n, and for n 〉 20, the values of Nusselt number approach a constant.  相似文献   

4.
In the present study, poly(vinylidene fluoride) (PVDF)/nano-TiO2 electroactive film was prepared by coating a substrate with an acetone/DMF solution, which was evaporated at a high temperature (110 °C). The crystallisation behaviour, dynamic mechanical properties and electroactive properties of this PVDF/nano-TiO2 electroactive film were investigated. The cross-section and surface of the film were observed with a scanning electron microscope (SEM). X-ray diffraction (XRD) results showed that the film containing the PVDF β phase, the desired ferroelectric phase, was obtained by crystallising the mixed solution of nano-TiO2 and PVDF at 110 °C, while the film containing the α phase was obtained from the crystallisation of the pure PVDF solution at the same temperature. It was found that the storage modulus, the room-temperature dielectric constant and the electric breakdown strength of the composite films were much higher than those of a pure PVDF film. TiO2 improved the mechanical properties and electroactive properties of the film. The results indicate that PVDF/nano-TiO2 composite films can be applied to the fabrication of self-sensing actuator devices.  相似文献   

5.
Fe3O4 ferrofluids containing monodisperse Fe3O4 nanoparticles with different diameters of 8, 12, 16 and 18nm are prepared by using high-temperature solution phase reaction. The particles have single crystal structures with narrow size distributions. At room temperature, the 8-nm ferrofluid shows superparamagnetic behaviour, whereas the others display hysteresis properties and the coercivity increases with the increasing particle size. The spin glass-like behaviour and cusps near 190K are observed on all ferrofluids according to the temperature variation of field-cooled (FC) and zero-field-cooled (ZFC) magnetization measurements. The cusps are found to be associated with the freezing point of the solvent. As a comparison, the ferrofluids are dried and the FC and ZFC magnetization curves of powdery samples are also investigated. It is found that the blocking temperatures for the powdery samples are higher than those for their corresponding ferrofluids. Moreover, the size dependent heating effect of the ferrofluids is also investigated in ac magnetic field with a frequency of 55 kHz and amplitude of 200 Oe.  相似文献   

6.
Asif Shah 《Physics letters. A》2009,373(45):4164-4168
The Korteweg-de Vries-Burger (KdVB) equation is derived for ion acoustic shock waves in a weakly relativistic electron-positron-ion plasma. Electrons, positrons are considered isothermal and ions are relativistic. The travelling wave solution has been acquired by employing the tangent hyperbolic method. The vivid display of the graphical results is presented and analyzed. It is observed that amplitude and steepness of the shock wave decrease with increase of the relativistic streaming factor, the positron concentration and they increase with the increase of the coefficient of kinematic viscosity and vice versa. It is determined that at low temperature the shock wave propagates, whereas at very high temperature the solitary wave propagates in the system. The results may have relevance in astrophysical plasmas as well as in inertial confinement fusion plasmas.  相似文献   

7.
Co0.8Fe2.2O4 ferrite thin films have been prepared on Si(0 0 1) substrates by the chemical solution deposition. Structural characteristics indicate all films are single phase with spinel structure and the space group and the mean grain size increases from 8 to 30 nm with the increase of annealing temperature. The magnetic properties of Co0.8Fe2.2O4 thin films are highly dependent on annealing temperature. The sample annealed at 800 °C possesses high saturation magnetization, moderate coercivity and squareness ratio, making it a promising application candidate in high-density record and magneto-optical materials.  相似文献   

8.
Quality pyroelectric Ba0.8Sr0.2TiO3 films have been successfully fabricated by a sol-gel processing using a highly diluted precursor solution. The remnant polarization of the films decreases with the temperature increasing, which results in a large pyroelectric coefficient at room temperature. Infrared response measured using a 500-K chopped blackbody at room temperature exhibits a typical pyroelectric response waveform. Frequency dependence of the infrared response measurement for a pixel with area of 2.5×10-3 cm2 showed that the maximum response output voltage of 3.2 mV was obtained at 6 Hz. Better infrared response can be expected by the improvement in thermal isolation of the pixels and electrode materials. Received: 26 April 2000 / Accepted: 9 May 2000 / Published online: 9 August 2000  相似文献   

9.
The effects of the precursor types of Ni and Fe components on the morphology, mean size, and magnetic property of NiFe2O4 powders prepared by spray pyrolysis from the spray solution, with citric acid were studied. The precursor powders with hollow and thin wall structure turned to the nano-sized NiFe2O4 powders after post-treatment at a temperature of 800 °C. The nickel ferrite powders obtained from the spray solution with ferric chloride had nanometer sizes and narrow size distributions irrespective of the types of nickel precursor. The nickel ferrite powders obtained from the spray solution with ferric nitrate and nickel chloride also had nanometer size and narrow size distribution. The saturation magnetizations of the NiFe2O4 powders changed from 37 to 42 emu/g according to the types of the Fe and Ni precursors. The saturation magnetizations of the NiFe2O4 powders increased with increasing the Brunauer-Emmett-Teller (BET) surface areas of the powders.  相似文献   

10.
J.H. Qiu  Q. Jiang 《Physics letters. A》2008,372(48):7191-7195
A thermodynamic analysis is employed to investigate the intrinsic electrocaloric effect of Pb(Zr1 − xTix)O3 solid solution system under the different electric field. Theoretical analysis indicates that Pb(Zr1 − xTix)O3 system has the giant electrocaloric coefficient and the large adiabatic temperature change near its ferroelectric Curie temperature. The applied electric field decreases not only the electrocaloric coefficient but also its temperature dependence. Furthermore, it increases the adiabatic temperature change as well as its dependence of temperature. The temperature corresponding to the maximum of electrocaloric coefficient and adiabatic temperature change increases with the enhancement of electric field because of its first-order phase transition between ferroelectric phase and paraelectric phase.  相似文献   

11.
Phase stability of GaxMn1−xAs alloy with a zincblende structure over the whole Mn composition is investigated by means of the full-potential linearized augmented plane-wave method and the cluster expansion method, and role of a lattice constraint from substrate on the phase stability is discussed. The calculated results demonstrate a phase separated type phase diagram with a miscibility gap even when the lattice constraint by changing the lattice constant is imposed, where the critical temperature is found to decrease with increasing the lattice constant. Thus, the elastic constraint from the substrate acts to help stabilize a solid solution so as to realize the magnetic semiconductor with higher Mn composition.  相似文献   

12.
We present a scheme for solution of the heat flow equation in one-dimension incorporating melting and vapourization produced under pulsed laser irradiation. The method can be applied to pure materials as well as multilayered structures such as deposited films. The variation of physical properties with temperature can be easily taken into account. Results of calculation are presented for aluminium and for chromium and antimony layers deposited on aluminium. As a consequence of excessive vapourization at high energy densities, the melt depth and the melt duration do not increase beyond a certain limit. The resolidification front velocity is strongly dependent on energy density and can be controlled in an experiment by a careful choice of laser parameters. Some recent experimental data on laser treated chromium films are discussed in light of our calculations.  相似文献   

13.
Normalized mechanical spectra of glycerol, 1,2-propanediol carbonate and poly(vinyl chloride)/di(2-ethyl-hexyl) phthalate (PVC/DOP) blends were studied in the temperature range from 100 to 300 K by a composite method. The dynamic glass transition was observed, which exhibits a peak of temperature-dependent loss modulus. The peak moves toward higher temperature with higher measuring frequency, which accords with the relaxation feature of the dynamic glass transition. Another characteristic temperature can be marked in the mechanical spectrum by the onset of storage modulus change, which is labeled as Tgm. Tgm is found to be nearly equal to the calorimetric glass transition temperature in glycerol, 1,2-propanediol carbonate and di(2-ethyl-hexyl) phthalate. As we expected, this onset temperature in the mechanical spectrum has an intimate relation with the calorimetric glass transition of materials, and it can be regarded as a representative when the calorimetric glass transition temperature is not available. Finally, normalized mechanical spectra of PVC/DOP blends with different PVC content were obtained and mechanical glass transition temperatures Tgm were determined.  相似文献   

14.
Nanometre-sized (hereafter nano-) Pb particles embedded in an Al matrix are prepared by ball milling. It is found that the size of nano-Pb particles was decreased with increasing milling time. The melting behaviour of nano-Pb particles embedded in the Al matrix is studied by means of dynamic mechanical analysis, and a single internal friction peak in the vicinity of Pb melting temperature is observed. The onset temperature of the peak moves to lower temperature with the decrease of particles size and the internal friction peak height is increased, which indicates a size-dependent melting behaviour of nano-Pb particles. It is suggested that the size-dependent melting behaviour is associated with surface melting.  相似文献   

15.
We investigate the influence of electron correlations on the temperature-dependence of the electronic structure of ferromagnetic bcc iron by use of a manybody evaluation of a generalized model of magnetism. The single-particle part of the model-Hamiltonian is taken from an LDA band structure calculation. The manybody interactions are described by only two parameters, an intraband Coulomb interactionU and an interband exchangeJ. WithU=1.8 eV andJ=0.2 eV the self-consistent model solution yields aT=0 moment of about 2.04 µB and a Curie-temperature of 1044K. Details of the magnetic behaviour of Fe can be traced back to a striking temperature variation of the quasiparticle density of states. A novel explanation for the experimentally-observed non-collapsing exchange splitting is demonstrated in terms of the temperature-dependent spectral density for wave-vectors near the -point. Typical differences in the magnetic behaviour of Fe and Ni are worked out.  相似文献   

16.
We study the nonlinear dynamics of a DNA molecular system at physiological temperature in a viscous media by using the Peyrard-Bishop model. The nonlinear dynamics of the above system is shown to be governed by the discrete complex Cinzburg-Landau equation. In the non-viscous limit, the equation reduces to the nonlinear Schroedinger equation. Modulational instability criteria are derived for both the cases. On the basis of these criteria, numerical simulations are made, which confirm the analytical predictions. The planar wave solution used as the initial condition makes localized oscillations of base pairs and causes energy localization. The results also show that the viscosity of the solvent in the surrounding damps out the amplitude of wave patterns.  相似文献   

17.
Effect of temperature and aspect ratio on the field emission properties of vertically aligned carbon nanofiber and multiwalled carbon nanotube thin films were studied in detail. Carbon nanofibers and multiwalled carbon nanotube have been synthesized on Si substrates via direct current plasma enhanced chemical vapor deposition technique. Surface morphologies of the films have been studied by a scanning electron microscope, transmission electron microscope and an atomic force microscope. It is found that the threshold field and the emission current density are dependent on the ambient temperature as well as on the aspect ratio of the carbon nanostructure. The threshold field for carbon nanofibers was found to decrease from 5.1 to 2.6 V/μm when the temperature was raised from 300 to 650 K, whereas for MWCNTs it was found to decrease from 4.0 to 1.4 V/μm. This dependence was due to the change in work function of the nanofibers and nanotubes with temperature. The field enhancement factor, current density and the dependence of the effective work function with temperature and with aspect ratio were calculated and we have tried to explain the emission mechanism.  相似文献   

18.
3 (CH2)9]SH) have been adsorbed on Au(111) single crystals both via vacuum deposition and from an ethanolic solution. The epitaxial structure of the ultrathin organic films has been identified at room temperature via low-energy electron diffraction to be c(4×2)R30° for the solution grown film and rectangular c(23×) for the vacuum deposited film. These structures correspond to molecules adsorbed on the surface with their carbon chains flat on the surface (vacuum deposited) and nearly perpendicular (solution grown). It is demonstrated that this orientation can be changed reversibly in vacuum via either annealing the films or exposing them to additional gas. Received: 7 February 1997/Accepted: 27 May 1997  相似文献   

19.
20.
Monodisperse Cu2O nanocubes are synthesized by reducing freshly prepared Cu(OH)2 with N2H4·H2O in water at room temperature. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations show that most of these nanocubes are uniform in size, with the average edge length of ∼500 nm. Selected area electron diffraction (SAED) investigation reveals that these nanocubes are single crystalline. Further, Cu2O nanoboxes are obtained by etching Cu2O nanocubes with acetic acid solution at room temperature. The nanoboxes retain the size and external morphology of the nanocubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号