首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Effects of temperature and the aspect ratio on the electron field emission properties of vertically aligned carbon nanofibers in thin-film form were studied in detail. Vertically aligned carbon nanofibers have been synthesized on silicon substrates via a direct current plasma enhanced chemical vapor deposition technique. Surface morphologies of the films were studied by an atomic force microscope. It was found that the length of the nanofibers increased and the diameter decreased as the thickness of the Ni catalyst film decreased. The threshold field for the electron field emission was found to be in the range from 4.3 to 5.4 V/μm for carbon nanofibers having different aspect ratios. The threshold field for carbon nanofibers having diameter ∼ 200 nm and aspect ratio ∼7.5 was found to decrease from 4.8 to 2.1 V/μm when the temperature was raised from 27 to 350 °C. This dependence was due to the change in work function of the nanofibers with temperature. The field enhancement factor, the current density and the effective work function were calculated and used to explain the emission mechanism. PACS 81.07.De; 61.10.-i; 79.70.+q; 73.30.+y  相似文献   

2.
Crystalline coiled carbon nano/micro fibers in thin film form have been synthesized via direct current plasma enhanced chemical vapor deposition (PECVD) on copper substrates with acetylene as a carbon precursor at 10 mbar pressure and 750 °C substrate temperature. The as-prepared samples were characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). XRD pattern as well as selected area electron diffraction (SAED) pattern showed that the samples were crystalline in nature. SEM and HRTEM studies showed that as synthesized coiled carbon fibers are having average diameter ∼100 nm and are several micrometers in length. The as-prepared samples showed moderately good electron field emission properties with a turn-on field as low as 1.96 V/μm for an inter-electrode distance 220 μm. The variation of field emission properties with inter-electrode distance has been studied in detail. The field emission properties of the coiled carbon fibrous thin films are compared with that of crystalline multiwalled carbon nanotubes and other carbon nanostructures.  相似文献   

3.
A new preparation process for carbon nanotubes (CNTs) cold cathode was studied through the replacement of traditional organic or inorganic binder with Ag nano-particles. This method has the advantages of low preparation temperature and fine electrical contact between CNTs paste and substrate. A mixture paste of CNTs, Ag nano-particles and other organic solvents was spreaded on Si substrate. By melting and connecting of Ag nano-particles after sintered 30 min at 250 °C, a flat CNTs films with good field emission properties was obtained. The measurements reveal that the turn on electric field and the threshold electric field of as-prepared CNTs cathode are 2.1 and 3.9 V/μm respectively and the field emission current density is up to 41 mA/cm2 at an applied electric field of 4.7 V/μm.  相似文献   

4.
A comprehensive comparative study of electron field emission properties of carbon nanotube (CNT) films prepared by vacuum filtration and screen-printing was carried out. Field emission performance of vacuum filtered CNT films with different filtered CNT suspension volumes was systematically studied, and the optimum electron emission was obtained with a low turn on field of ∼0.93 V/μm (at 1 μA/cm2) and a high field enhancement factor β of ∼9720. Comparing with screen-printed CNT films, vacuum filtered CNT films showed better electron emission performance, longer lifetime, and greater adhesive strength to substrates. This work reveals a potential use of vacuum filtered CNT films as field emission cathodes.  相似文献   

5.
Carbon nanotubes with uniform density were synthesized on carbon fiber substrate by the floating catalyst method. The morphology and microstructure were characterized by scanning electron microscopy and Raman spectroscopy. The results of field emission showed that the emission current density of carbon nanotubes/carbon fibers was 10 μA/cm2 and 1 mA/cm2 at the field of 1.25 and 2.25 V/μm, respectively, and the emission current density could be 10 and 81.2 mA/cm2 with the field of 4.5 and 7 V/μm, respectively. Using uniform and sparse density distribution of carbon nanotubes on carbon fiber substrate, the tip predominance of carbon nanotubes can be exerted, and simultaneously the effect of screening between adjacent carbon nanotubes on field emission performance can also be effectively decreased. Therefore, the carbon nanotubes/carbon fibers composite should be a good candidate for a cold cathode material.  相似文献   

6.
Plasma-enhanced chemical vapor deposition (PECVD) method was employed to grow the Fe-catalyzed carbon nanotubes (CNTs). The grown CNTs with a uniform diameter in the range of about 10-20 nm and the typical lengths beyond 1 μm resulted in a very high aspect ratio. The Raman and TEM results showed that the grown CNTs contained a large amount of carbonaceous particles and crystal defects, such as pentagon-heptagon pair defects. XPS measurement indicated that the CNTs had CH covalent bonds. Field emission characteristics exhibited the low turn-on threshold field of 2.75 V/μm and the maximum emission current density of 7.75 mA/cm2 at 6.5 V/μm. The growth mechanism of CNTs and the effects of hydrogen plasma on their structure were discussed.  相似文献   

7.
Vertically aligned ZnO nanorod arrays with different aspect ratios were synthesized by hybrid wet chemical route. Modulation of the field emission properties (FE) with aspect ratio of ZnO nanorods was examined. With the increase in the aspect ratio, the emission current density increases from 0.02 to 8 μA/cm2 at 7.0 V/μm. Turn-on voltage was seen to decrease from 9.6 to 7 V/μm at a current density of 10 μA/cm2 with the increase in aspect ratio in the ZnO films. The interrelation between the FE characteristics (emission thresholds, current density, surface uniformity, etc.) and microstructure of the ZnO nanostructure obtained from scanning electron microscopy (SEM) and atomic force microscopy (AFM) was discussed. Quality of the ZnO nanorods was also examined by using Raman spectroscopy and Fourier transformed infrared spectroscopy (FTIR). It was found that the observed enhancements of FE characteristics could mainly be attributed to the increase in aspect ratio and associated number density of ZnO nanorods.  相似文献   

8.
Silicon-incorporated diamond-like carbon (Si-DLC) films were deposited via dc plasma-enhanced chemical vapor deposition (PECVD), on glass and alumina substrates at a substrate temperature 300 °C. The precursor gas used was acetylene and for Si incorporation, tetraethyl orthosilicate dissolved in methanol was used. Si atomic percentage in the films was varied from 0% to 19.3% as measured from energy-dispersive X-ray analysis (EDX). The binding energies of C 1s, Si 2s and Si 2p were determined from X-ray photoelectron spectroscopic studies. We have observed low-macroscopic field electron emission from Si-DLC thin films deposited on glass substrates. The emission properties have been studied for a fixed anode-sample separation of 80 μm for different Si atomic percentages in the films. The turn-on field was also found to vary from 16.19 to 3.61 V/μm for a fixed anode-sample separation of 80 μm with a variation of silicon atomic percentage in the films 0% to 19.3%. The turn-on field and approximate work function are calculated and we have tried to explain the emission mechanism there from. It was found that the turn-on field and effective emission barrier were reduced by Si incorporation than undoped DLC.  相似文献   

9.
Amorphous carbon thin films with quasi vertical nanowall-like morphologies have been synthesized via direct current plasma enhanced chemical vapor deposition on both copper and silicon substrates with acetylene as a carbon precursor. The deposition temperature and pressure were maintained at 750 °C and 5 mbar respectively. The morphology of the as-prepared samples has been investigated with the help of a field emission scanning electron microscope and an atomic force microscope, both revealing nanowall-like morphologies with thicknesses of the walls ∼6-15 nm. The as-prepared carbon nanowalls showed good field electron emission with a turn-on field as low as 1.39 V/μm. The effect of inter-electrode distance on the field electron emission has also been studied in detail.  相似文献   

10.
Vertically aligned carbon nanofibers (CNF) and multiwalled carbon nanotubes (MWCN) have been synthesized from camphor by catalytic thermal CVD method on Co and Co/Fe thin films (for CNF) and on silicon substrates using a mixture of camphor and ferrocene (for MWCN). CNF and MWCN are studied by field emission scanning electron microscopy, high-resolution transmission electron microscopy, visible Raman spectroscopy, X-ray diffraction in order to get insight into the microstructure and morphology of these materials. Field electron emission study indicates turn-on field of about 2.56, 3.0 and 6.5 V/μm for MWCN, Co/CNF and Co/Fe/CNF films, respectively. The best performance of MWCN in field electron emission among the materials studied can be due to the highest aspect ratio, good graphitization and good density.  相似文献   

11.
Carbon films were prepared on single crystal silicon substrates by heat-treatment of a polymer-poly(phenylcarbyne) at 800 °C in Ar atmosphere. The heat-treatment caused the change of the polymer into carbon film, which exhibited good field emission properties. Low turn-on emission field of 4.3 V/μm (at 0.1 μA/cm2) and high emission current density of 250 μA/cm2 (at 10 V/μm) were observed for the polymer-converted carbon films. This behavior was demonstrated to be mainly related to the microstructure of the carbon films, which consisted of fine carbon nanoparticles with high sp2 bonding. The carbon films, which can be deposited simply with large areas, are promising for practical applications in field emission display.  相似文献   

12.
R.S. Li 《Applied Surface Science》2009,255(9):4754-4757
Diamond-like carbon (DLC) films were deposited on Al substrates by electrodeposition technique under various voltages. The surface morphology and compositions of synthesized films were characterized by scanning electron microscopy and Raman spectroscopy. With the increase of deposition voltage, the sp2 phase concentration decreased and the surface morphology changed dramatically. The influence of deposition voltage on the field electron emission (FEE) properties of DLC films was not monotonic due to two adverse effects of deposition voltage on the surface morphology and compositions. The DLC film deposited under 1200 V exhibited optimum FEE property, including a lowest threshold field of 13 V/μm and a largest emission current density of 904.8 μA/cm2 at 23.5 V/μm.  相似文献   

13.
Carbon nanofibers were grown by electrodeposition technique onto aligned zinc oxide (ZnO) nanorods deposited by hybrid wet chemical route on glass substrates. X-ray diffraction traces indicated very strong peak for reflections from (0 0 2) planes of ZnO. The Raman spectra were dominated by the presence of G band at about 1597 cm−1 corresponding to the E2g tangential stretching mode of an ordered graphitic structure with sp2 hybridization and a D band at about 1350 cm−1 originating from disordered carbon. Fourier transformed infrared studies indicated the presence of a distinct characteristic absorption peak at ∼511 cm−1 for Zn-O stretching mode. Photoluminescence spectra indicated band edge luminescence of ZnO at ∼3.146 eV along with a low intensity peak at ∼0.877 eV arising out of carbon nanofibers. Field emission properties of these films and their dependence on the CNF coverage on ZnO nanorods are reported here. The average field enhancement factor as determined from the slope of the FN plot was found to vary between 1 × 103 and 3 × 103. Both the values of turn-on field and threshold field for CNF/ZnO were lower than pure ZnO nanorods.  相似文献   

14.
Different densities of ZnO nanoneedle films have been prepared by pre-coated zinc foils with thin layer of copper and carbon followed by thermal oxidation at 400 °C in air. The X-ray diffraction patterns show well defined peaks, which could be indexed to the wurtzite hexagonal phase of ZnO. The scanning electron microscope images clearly reveal formation of ZnO needles on the entire substrate surface. The X-ray photoelectron spectroscopy studies indicate that Cu and C ions are incorporated into the ZnO lattice. Photoluminescence studies evaluate different emission bands originated from different defect mechanism. From the field emission studies, the threshold field, required to draw emission current density of ∼100 μA/cm2, is observed to be 2.25 V/μm and 1.57 V/μm for annealed zinc foil pre-coated with copper and carbon, respectively. The annealed film with copper layer exhibits good emission current stability at the pre-set value of ∼100 μA over a duration of 4 h. The results show that buffer layer is an important factor to control the growth rate, resulting in different density of ZnO needles, which leads to field emission properties. This method may have potential in fabrication of electron sources for high current density applications.  相似文献   

15.
A composite material of Zinc oxide and carbon nano-tubes (ZnO-CNTs) paste was synthesized by mixing multi-wall CNTs, ZnO nano-grains and organic vehicles. The microstructures and the morphologies of screen-printed films were characterized by field-emission scanning electron microscope. Results show that ZnO flakes geometrically matched with CNTs by filling into the interspaces of CNTs or directly covering upon CNTs. The field emission characteristics of films are found to be greatly effected by ZnO nano-grains. Especially, the turn-on electric field of ZnO-CNT film (1.17 V/μm) which is far lower than that of usual CNT films (1.70 V/μm). Furthermore, except that better emission stability is achieved, brightness and emission uniformity are notably enhanced as well. It can be speculated that the special microstructures of ZnO mixed CNT films dominate the enhanced electrical conductivity, thermal conductivity, and effective emitters.  相似文献   

16.
Flame synthesis of carbon nanotubes for panel field emission lamp   总被引:2,自引:0,他引:2  
Multi-walled carbon nanotubes (CNTs) were synthesized on the surfaces of Ni-alloy plated Fe-wires with the diameter of 2 mm using a conventional laboratory ethanol (C2H5OH) flame method at 560 °C. SEM showed that the product had bush-shaped micron-structures with diameters from 100 to 450 nm and lengths of over 1.0 μm. TEM revealed that the micron-structures were composed of multi-walled nanotube bundles with the diameters of about 50 nm. The test on the diode configuration field emission of the Fe-wire arrays was performed. The onset electric field was 2.95 V/μm and the emission current can reach 50 mA/cm2 at an electric field of 9 V/μm. The average fluctuation of the emission current density was less than 7%. The result suggests that the field emission was uniform and the present technique was feasible to fabricate Panel Field Emission Lamp (PFEL) with arrays of carbon nanotubes. PFEL has the advantages of high luminescence as well as stability, and thus, it can be used to replace ordinary lights.  相似文献   

17.
Field emission properties of carbon nanotube field emission cathodes (CNT-FECs) produced using composite plating are studied. The experiment uses a CNT suspension and electroless Ni plating bath to carry out composite plating. The CNTs were first purified by an acid solution, dispersed in a Ni electrobath, and finally co-deposited with Ni on glass substrates to synthesize electrically conductive films. Field emission scanning electron microscopy and Raman spectroscopy results show that the field emission characteristics and graphitic properties of CNT-FECs depend on the pH value of the electrobath. Experiments show that the optimum electrobath pH value is 5.4, achieving a field emission current density of 1.0 mA/cm2 at an applied electric field of 1.5 V/μm. The proposed CNT-FECs possess good field emission characteristics and have potential for backlight unit application in liquid crystal displays.  相似文献   

18.
The effect of very high energy electron beam irradiation on the field emission characteristics of multi-walled carbon nanotubes (MWCNTs) has been investigated. The MWCNTs films deposited on silicon (Si) substrates were irradiated with 6 MeV electron beam at different fluence of 1×1015, 2×1015 and 3×1015 electrons/cm2. The irradiated films were characterized using scanning electron microscope (SEM) and micro-Raman spectrometer. The SEM analysis clearly revealed a change in surface morphology of the films upon irradiation. The Raman spectra of the irradiated films show structural damage caused by the interaction of high-energy electrons. The field emission studies were carried out in a planar diode configuration at the base pressure of ∼1×10−8 mbar. The values of the threshold field, required to draw an emission current density of ∼1 μA/cm2, are found to be ∼0.52, 1.9, 1.3 and 0.8 V/μm for untreated, irradiated with fluence of 1×1015, 2×1015 and 3×1015 electrons/cm2. The irradiated films exhibit better emission current stability as compared to the untreated film. The improved field emission properties of the irradiated films have been attributed to the structural damage as revealed from the Raman studies.  相似文献   

19.
The field emission properties of Ti-DLC films in diode and coplanar device structures were studied. An emission current density of 1.14 A/cm2 could be obtained at an applied field of 33 V/μm and the threshold field was 24 V/μm for the coplanar emission structure. The silicon substrate was found to limit the emission current in the diode structure because of its high resistivity.  相似文献   

20.
Si doped and undoped nanocrystalline aluminum nitride thin films were deposited on various substrates by direct current sputtering technique. X-ray diffraction analysis confirmed the formation of phase pure hexagonal aluminum nitride with a single peak corresponding to (1 0 0) reflection of AlN with lattice constants, a = 0.3114 nm and c = 0.4986 nm. Energy dispersive analysis of X-rays confirmed the presence of Si in the doped AlN films. Atomic force microscopic studies showed that the average particle size of the film prepared at substrate temperature 200 °C was 9.5 nm, but when 5 at.% Si was incorporated the average particle size increased to ∼21 nm. Field emission study indicated that, with increasing Si doping concentration, the emission characteristics have been improved. The turn-on field (Eto) was 15.0 (±0.7) V/μm, 8.0 (±0.4) V/μm and 7.8 (±0.5) V/μm for undoped, 3 at.% and 5 at.% Si doped AlN films respectively and the maximum current density of 0.27 μA/cm2 has been observed for 5 at.% Si doped nanocrystalline AlN film. It was also found that the dielectric properties were highly dependent on Si doping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号