首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Xue-Yue Xu 《中国物理 B》2022,31(6):68503-068503
The etching and passivation processes of very long wavelength infrared (VLWIR) detector based on the InAs/GaSb/AlSb type-II superlattice have been studied. By studying the effect of each component in the citric acid solution (citric acid, phosphoric acid, hydrogen peroxide, deionized water), the best solution ratio is obtained. After comparing different passivation materials such as sulfide + SiO2, Al2O3, Si3N4 and SU8, it is found that SU8 passivation can reduce the dark current of the device to a greater degree. Combining this wet etching and SU8 passivation, the R0A of VLWIR detector with a mesa diameter of 500 μm is about 3.6 Ω ·cm2 at 77 K.  相似文献   

2.
准分子激光电化学刻蚀镍的特性研究   总被引:1,自引:0,他引:1  
提出一种新的准分子激光电化学加工工艺,在阳极钝化区内,通过准分子激光照射,以实现无屏蔽的各向异性的微加工。对该工艺进行了可行性分析,并对其进行了初步试验,证实在钝化区,准分子激光导致刻蚀电流增加的幅度比较明显,在此基础上,深入研究了在准分子脉冲激光作用过程中,刻蚀电流与脉冲数、脉冲频率之间的关系。表明准分子激光在钝化区具有增强电化学特性的能力。  相似文献   

3.
ICP法测定超临界水氧化设备腐蚀液中铜、铬、铝、镍、钛   总被引:1,自引:1,他引:0  
采用光谱法研究了超临界水氧化设备腐蚀液中Cu,Cr,Al,Ni和Ti元素的含量,分析判断不锈钢设备腐蚀状况及其因素。结果表明,超临界设备不锈钢材料主要成分元素Cr在超临界水中有不同程度的溶解,并且溶解程度随温度和压力升高而增大。  相似文献   

4.
Influence of ferric iron on the electrochemical behavior of pyrite   总被引:1,自引:0,他引:1  
The electrochemical behavior of a pyrite electrode in a sulfuric acid solution with different concentrations of ferric iron (Fe3+) was investigated using electrochemical techniques including measurements of open circuit potential, cyclic voltammetry, Tafel polarization curves and electrochemical impedance spectroscopy (EIS). The results show that the pyrite oxidation process takes place via a two-step reaction at the interface of the pyrite electrode and the electrolyte, and that a passivation film composed of elemental sulfur, polysulfides, and metal-deficient sulfide is formed during the process of the first-step reaction. Ferric iron plays an important role in the dissolution of pyrite by enhancing the direct oxidation. The Tafel polarization curves indicate that the polarization current of the pyrite electrode increases with an increase in Fe3+ concentration. It has also been shown that the higher concentration of Fe3+, the more easily the pyrite can be transformed into the passivation region. Moreover, the EIS response is found to be sensitive to changes in Fe3+ concentration.  相似文献   

5.
The work addresses the influence of cementation and electrodeposition of copper coatings on the corrosion resistance of AISI 304 stainless steel immersed in 30 wt.% H2SO4 at temperatures of 25 and 50 °C. Corrosion process was evaluated by gravimetric tests, DC measurements and electrochemical impedance spectroscopy (EIS). The specimen surfaces were analysed by scanning electron microscopy, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction. The corrosion performance of AISI 304 stainless steel in sulphuric acid solution was greatly improved by copper coatings. The amount of copper deposited by the cementation process was sufficient to protect the stainless steel of corrosion. A greater amount of copper obtained by electrodeposition treatments does not supply further improvement in the corrosion behaviour. The improved corrosion resistance is related to copper dissolution at the initial stages of immersion tests and the presence of Cu2+ in the solution, which makes the medium more oxidizing, increasing the stability of the passive layer. In addition, the presence of copper at the surface reduces the overpotential of cathodic reaction, enabling the transition from an active region to the passive one.  相似文献   

6.
The performance of the paint coating based on acrylic-polyaniline on magnesium alloy ZM 21 has been studied by electrochemical impedance spectroscopy in 0.5% NaCl solution. The polyaniline was prepared by chemical oxidative method of aniline with ammonium persulphate in phosphoric acid medium. The phosphate-doped polyaniline was characterized by FTIR and XRD methods. Acrylic paint containing the phosphate-doped polyaniline was prepared and coated on magnesium ZM 21 alloy. The coating was able to protect the magnesium alloy and no base metal dissolution was noted even after 75 days exposure to sodium chloride solution.  相似文献   

7.
Electrochemical etching using laser masking (EELM), which is a combination of laser beam irradiation for masking and electrochemical etching, allows the micro fabrication of stainless steel without photolithography technology. The EELM process can produce various micro patterns and multilayered structures. In this study, the machining characteristics of EELM were investigated. Changes in characteristics of recast layer formation and the protective effect of the recast layer according to the laser masking conditions and electrochemical etching conditions were investigated by field emission scanning electron microscopy (FE-SEM), focused ion beam (FIB) and X-ray photoelectron spectroscopy (XPS). The oxidized recast layer with a thickness of 500 nm was verified to yield a superior protective effect during electrochemical etching and good form accuracy. Finally, micro patterns and structures were fabricated by EELM.  相似文献   

8.
The corrosion behavior of the intermetallic compounds homogenized, Ni3(Si,Ti) (L12: single phase) and Ni3(Si,Ti) + 2Mo (L12 and (L12 + Niss) mixture region), has been investigated using an immersion test, electrochemical method and surface analytical method (SEM; scanning electron microscope and EPMA: electron probe microanalysis) in 0.5 kmol/m3 H2SO4 and 0.5 kmol/m3 HCl solutions at 303 K. In addition, the corrosion behavior of a solution annealed austenitic stainless steel type 304 was studied under the same experimental conditions as a reference. It was found that the intergranular attack was observed for Ni3(Si,Ti) at an initial stage of the immersion test, but not Ni3(Si,Ti) + 2Mo, while Ni3(Si,Ti) + 2Mo had the preferential dissolution of L12 with a lower Mo concentration compared to (L12 + Niss) mixture region. From the immersion test and polarization curves, Ni3(Si,Ti) + 2Mo showed the lowest corrosion resistance in both solutions and Ni3(Si,Ti) had the highest corrosion resistance in the HCl solution, but not in the H2SO4 solution. For instance, it was found that unlike type 304 stainless steel, these intermetallic compounds were difficult to form a stable passive film in the H2SO4 solution. The results obtained were explained in terms of boron segregation at grain boundaries, Mo enrichment and film stability (or strength).  相似文献   

9.
The microstructures and properties of deep laser melted and rapidly solidified zones produced by a cw power laser on thick plates of AISI 304 stainless steel were studied. Both chemical and mechanical properties of the solidified regions were found to be comparable or better than those characterizing the original material, thus allowing the melting process to be used for technological purposes, in particular for welding. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
This article aims to present a new alternative to waste management of spent Li-ion batteries from cell phones. In this sense, the proposed is recycling the cobalt from Li-ion cathode by electrodeposition and apply it as corrosion protector of AISI 430 stainless steel. Thus, two greatest environmental problems can be solved, producing a low-cost and high-corrosion-resistant stainless steel. The cobalt electrodeposition bath came from acid dissolution of spent Li-ion cathode with chemical formula LiCoO2. The charge efficiency for cobalt electrodeposition in ?1.0 V and pH = 3 reaches 95 %. A protective layer of Co3O4 was successfully obtained by treatment of AISI 430 stainless steel with cobalt electrodeposited at 800 °C for 200 h in air atmosphere. The corrosion current of AISI 430 stainless steel in artificial seawater was reduced from 30 to 0.76 μA cm?2. The treatment proposed produces a AISI 430 stainless steel with double of corrosion resistance and half of cost if compared with AISI 304 stainless steel.  相似文献   

11.
To further understand the mechanism of laser electrochemical etching metal, it is necessary to describe the temperature field induced by laser heating metal at the liquid–solid interfaces. For solving the complex problem of laser heating a metal immersed in a liquid, the thermal phenomena adjacent to the metal–liquid interface, which was induced by means of irradiating a stainless steel sample immersed in a liquid with an 808 nm semiconductor laser beam, were numerically investigated. Based on a simplified method to solve the transient explosive boiling when a continuous wave (CW) laser heating a material in a liquid, a commercial finite element analysis (FEA) code (ABAQUS) was used to directly solve and model the transient temperature fields of laser micro-patterning metal in a liquid. As known from simulation results, the simulation of laser scanning indicates that it realizes the effect of pulse laser heating owing to laser moving and liquid cooling. Moreover, laser scanning achieves the pattern at a high resolution. At the same time, the experiment phenomena also proved that the simulation results were reasonable.  相似文献   

12.
A simple heat treatment was used to fabricate carbonaceous layer-coated electrodes: micro-ring electrodes and conductive stainless steel. Substrates of sharpened quartz capillaries or type-316 stainless steel plates were put in an alumina boat with powder of petroleum pitch A240F separately and heated at 1073-1273 K in a flow of nitrogen or argon. By this treatment, both of the substrates were coated with a uniform carbonaceous layer of several hundred nano-meters in thickness. The electric conductivity of the layer was improved by increases in temperature and period of the heating. The quartz glass-capillary covered with the conductive layer was modified to a needle-type microelectrode by coating with an insulating polymer and baring the tip. At least a dozen carbon micro-ring electrodes with an outer radius of about 1 μm were successfully prepared by the simple heat treatment. On the other hand, the carbonaceous layer formed on type-316 stainless steel showed relatively poor conductivity due to the formation of oxides in the layer. However, the conductivity was improved by electroplating of nickel on the substrate before the heating. The carbonaceous layer-coated stainless steel showed good corrosion resistance in sulphuric acid.  相似文献   

13.
Austenitic stainless steel can be attack by localized corrosion in saline environments, such as seawater. TiN/Ti multilayers can improve the corrosion resistance of the stainless steel better than TiN monolayers, because the titanium layers improve the impermeability of TiN/Ti multilayers. In this work, 1.75-4.55 μm thick layers were deposited on to grounded or −100 V biased substrates of 304 stainless steel substrates by reactive magnetron sputtering. The corrosion resistance of the layers was studied by means of potentiodynamic polarization in 0.5 M NaCl solutions. It was found that the pitting corrosion resistance was dependent on the bias and period number of the multilayers.  相似文献   

14.
纯钛电极上的表面增强拉曼光谱研究   总被引:1,自引:0,他引:1  
采用机械粗糙、电化学氧化还原、化学刻蚀等方法对纯钛电极表面进行粗糙,在钛基底上获得了表面增强拉曼光谱(SERS)信号。初步的实验结果表明,采用机械粗糙和电化学氧化还原方法能够获得具有一定粗糙度的电极表面,但是该表面并不具有SERS活性。而采用氢氟酸化学刻蚀方法能够获得具有SERS活性的表面,并且成功检测到吡啶分子的表面增强拉曼信号。实验尝试了在不同条件下进行刻蚀,对酸的刻蚀浓度、刻蚀时间、外接电位等影响因素作了研究,结果发现基底的SERS活性随氢氟酸浓度增大而出现最佳条件,即氢氟酸浓度0.33 Wt%,刻蚀时间为5 min时的拉曼信号最好。实验以0.01 mol·L-1吡啶为探针分子,0.1 mol·L-1 KCl为电解质,在开路电位下成功地观察了钛电极上的表面增强拉曼光谱。  相似文献   

15.
Self-assembly of alkylphosphonic acids on stainless steel was investigated under different conditions. Four different alkylphosphonic acids exhibiting alkyl chain of various size were synthesized and studied: butylphosphonic acid (C4P), octylphosphonic acid (C8P), decylphosphonic acid (C10P), and hexadecylphosphonic acid (C16P). Electrochemistry experiments were extensively carried out in order to determine electrochemical surface blocking of adsorbed layers in function of grafting time. In term of surface blocking, an 8 h modification time was optimal for all alkylphosphonic acids. Longer immersion times lead to degradation of adsorbed layers. For the first time, grafting of C16P was studied under high frequency ultrasound irradiation. Interestingly, grafting process is highly accelerated under sonication and well-covering C16P modified substrates are obtained after 1 h of immersion under ultrasound irradiation. This would allow to elaborate high-quality alkylphosphonic acids modified samples within much shorter times. Water contact angles measurements and X-ray Photoelectrons Spectroscopy (XPS) confirmed presence of adsorbed alkylphosphonic acids on stainless steel surface. A very tight link between electrochemical blocking, surface hydrophobicity and species chemical grafting was established.  相似文献   

16.
准分子激光电化学刻蚀金属的研究   总被引:1,自引:0,他引:1  
为了探寻准分子激光电化学刻蚀工艺的特性,采用功率密度大的248nm准分子激光聚焦照射浸在溶液中的金属表面,实现了一种激光电化学刻蚀复合工艺。在实验的基础上,通过对激光电化学刻蚀金属和硅的基本形貌进行比较和分析,研究了该工艺的工艺特性。研究结果表明,该复合工艺为激光直接刻蚀和激光热诱导电化学刻蚀。其中激光热诱导电化学刻蚀是通过激光的光热效应和由激光诱导的冲击波来实现对腐蚀液和材料的冲击、微搅拌等作用的。  相似文献   

17.
Kurt W. Kolasinski 《Surface science》2009,603(10-12):1904-1911
The development and status of what is commonly called the Gerischer mechanism of silicon etching in fluoride solutions is reviewed. The two most widely used and studied wet etchants of silicon are F? and OH?. Their mechanisms of atom removal share many things in common; in particular, chemical passivation by a hydrogen-terminated surface plays an important role in both. Crucially, however, their initiation steps are different, and this leads to important differences in the structures of the materials produced by the etchants. The initiation of etching by F? is electrochemical in nature, responding to the electronic structure of the Si, and is, therefore, a self-limiting reaction that can produce nanocrystalline porous silicon. Hydroxide etching destroys porous silicon because its initiation step is a catalytic chemical reaction and not a self-limiting process. A number of unanswered questions regarding the dynamics of fluoride etching are highlighted.  相似文献   

18.
Porous Si (PS) was fabricated simply by electrochemical anodic etching of a Si wafer. By a combination of SEM, EDX and infrared spectrum measurements hydrogen-terminated crystalline Si surfaces were identified. Transparent Si nanocolloids were obtained via thermally-initiated hydrosilation of the hydrogenated Si surfaces reaction with unsaturated 1-undecene. In contrast to weak luminescence in the hydrogenated PS dispersed in toluene, intense luminescence was observed in the Si nanocolloid. In the Si nanocolloid, both strong luminescence and long-term stability can be correlated with alkylated passivation, as formation of Si–C bonds identified in infrared spectrum. Additionally, the oxidation effect was noticeable in affecting the luminescence of nano-Si during the process.  相似文献   

19.
The promising applications of the microwave plasmas have been appearing in the fields of chemical processes and semiconductor manufacturing. Applications include surface deposition of all types including diamond/diamond like carbon (DLC) coatings, etching of semiconductors, promotion of organic reactions, etching of polymers to improve bonding of the other materials etc. With a 2.45 GHz. 700 W, microwave induced plasma chemical vapor deposition (CVD) system set up in our laboratory we have deposited diamond like carbon coatings. The microwave plasma generation was effected using a wave guide single mode applicator. We have deposited DLC coatings on the substrates like stainless steel, Cu-Be, Cu and Si. The deposited coatings have been characterized by FTIR, Raman spectroscopy and ellipsometric techniques. The results show that we have achieved depositing ∼95% sp3 bonded carbon in the films. The films are unform with golden yellow color. The films are found to be excellent insulators. The ellipsometric measurements of optical constant on silicon substrates indicate that the films are transparent above 900 nm.  相似文献   

20.
Y.T. Zhou  Y.J. Wang  S.J. Zheng  B. Zhang 《哲学杂志》2015,95(22):2365-2375
The long-standing problem of dislocation-preferential dissolution in a crystal has been generally ascribed to the distortion energy stored in the vicinity of the dislocation core. However, due to lack of experimental means, the relationship between the local distortion state and the electrochemical behaviour of a single dislocation has not been established so far. via in situ ex-environment transmission electron microscopy (TEM), we demonstrate that the emergences of both edge and screw dislocations on MnS surfaces are the preferential sites for dissolution of the MnS inclusions within a stainless steel. In addition, we map the strain-induced variation of the standard electrode potential around the edge dislocation by a combination of the aberration-corrected high-resolution TEM and strain-analysis-based mechanochemistry theory. Significantly, our report provides a new approach to investigate the strain–corrosion correlation at an atomic scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号