首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
We study a quantum network percolation model which is numerically pertinent to the understanding of the delocalization transition of the quantum Hall effect. We show dynamical localization for parameters corresponding to edges of Landau bands, away from the expected transition point.  相似文献   

2.
We investigate the nature of one-electron eigenstates in power-law-diluted chains for which the probability of occurrence of a bond between sites separated by a distance r decays as p(r) = p/r(1+σ). Using an exact diagonalization scheme and a phenomenological finite-size scaling analysis, we determine the quantum percolation transition phase diagram in the full parameter space (p,σ). We show that the density of states displays singularities at some resonance energies associated with degenerate eigenstates localized in a pair of sites with special symmetries. This model is shown to present an intermediate phase for which there is classical percolation but no quantum percolation. Quantum percolation only takes place for σ < 0.78, a value larger than the corresponding one for the Anderson transition in long-ranged coupled chains with random diagonal disorder. The fractality of critical wavefunctions is also characterized.  相似文献   

3.
We present a numerical study of the spin-1/2 bilayer Heisenberg antiferromagnet with random interlayer dimer dilution. From the temperature dependence of the uniform susceptibility and a scaling analysis of the spin correlation length we deduce the ground state phase diagram as a function of nonmagnetic impurity concentration p and bilayer coupling g. At the site percolation threshold, there exists a multicritical point at small but nonzero bilayer coupling g(m)=0.15(3). The magnetic properties of the single-layer material La(2)Cu(1-p)(Zn,Mg)(p)O4 near the percolation threshold appear to be controlled by the proximity to this new quantum critical point.  相似文献   

4.
Ground-state magnetic properties of the diluted Heisenberg antiferromagnet on a square lattice are investigated by means of the quantum Monte Carlo method with the continuous-time loop algorithm. It is found that the critical concentration of magnetic sites is independent of the spin size S, and equal to the two-dimensional percolation threshold. However, the existence of quantum fluctuations makes the critical exponents deviate from those of the classical percolation transition. Furthermore, we found that the transition is not universal, i.e., the critical exponents significantly depend on S.  相似文献   

5.
Using the relation of a set of nonlinear Langevin equations to reaction–diffusion processes, we note the existence of a maximal strength of the noise for the stochastic travelling wave solutions of these equations. Its determination is obtained using the field-theoretical analysis of branching-annihilation random walks near the directed percolation transition. We study its consequence for the stochastic Fisher–Kolmogorov–Petrovsky–Piscounov equation. For the related Langevin equation modeling the quantum chromodynamic nonlinear evolution of gluon density with rapidity, the physical maximal-noise limit may appear before the directed percolation transition, due to a shift in the travelling-wave speed. In this regime, an exact solution is known from a coalescence process. Universality and other open problems and applications are discussed in the outlook.  相似文献   

6.
By analyzing the recent experimental and theoretical results, we find that the abrupt conductivity transition of an ultrathin aggregated film of bismuth during its growth is not describable by the Anderson transition or quantum percolation, but instead can be well described by a two-dimensional continuum model of classical percolation.  相似文献   

7.
The interplay of geometric randomness and strong quantum fluctuations is an exciting topic in quantum many-body physics, leading to the emergence of novel quantum phases in strongly correlated electron systems. Recent investigations have focused on the case of homogeneous site and bond dilution in the quantum antiferromagnet on the square lattice, reporting a classical geometric percolation transition between magnetic order and disorder. In this study we show how inhomogeneous bond dilution leads to percolative quantum phase transitions, which we have studied extensively by quantum Monte Carlo simulations. Quantum percolation introduces a new class of two-dimensional spin liquids, characterized by an infinite percolating network with vanishing antiferromagnetic order parameter.  相似文献   

8.
We study quantum percolation which is described by a tight-binding Hamiltonian containing only off-diagonal hopping terms that are generally in quenched binary disorder (zero or one). In such a system, transmission of a quantum particle is determined by the disorder and interference effects, leading to interesting sharp features in conductance as the energy, disorder, and boundary conditions are varied. To aid understanding of this phenomenon, we develop a visualization method whereby the progression of a wave packet entering the cluster through a lead on one side and exiting from another lead on the other side can be tracked dynamically. Using this method, we investigate the localization-delocalization transition in a 2D system for various boundary conditions. Our results indicate the existence of two different kinds of localized regimes, namely exponential and power law localization, depending on the amount of disorder. Our study further suggests that there may be a delocalized state in the 2D quantum percolation system at very low disorder. These results are based on a finite size scaling analysis of the systems of size up to 70 × 70 (containing 4900 sites) on the square lattice.  相似文献   

9.
By carefully analyzing the low temperature density dependence of 2D conductivity in undoped high-mobility n-GaAs heterostructures, we conclude that the 2D metal-insulator transition in this 2D electron system is a density inhomogeneity driven percolation transition due to the breakdown of screening in the random charged impurity disorder background. In particular, our measured conductivity exponent of approximately 1.4 approaches the 2D percolation exponent value of 4/3 at low temperatures and our experimental data are inconsistent with there being a zero-temperature quantum critical point in our system.  相似文献   

10.
Uma Divakaran 《Physica A》2007,384(1):39-43
In this article, we briefly review the critical behaviour of a long-range percolation model in which any two sites are connected with a probability that falls off algebraically with the distance. The results of this percolation transition are used to describe the quantum phase transitions in a dilute transverse Ising model at the percolation threshold pc of the long-range connected lattice. In the similar spirit, we propose a new model of a contact process defined on the same long-range diluted lattice and explore the transitions at pc. The long-range nature of the percolation transition allows us to evaluate some critical exponents exactly in both the above models. Moreover, mean field theory is valid for a wide region of parameter space. In either case, the strength of Griffiths McCoy singularities are tunable as the range parameter is varied.  相似文献   

11.
Recently a discontinuous percolation transition was reported in a new "explosive percolation" problem for irreversible systems [D. Achlioptas, R. M. D'Souza, and J. Spencer, Science 323, 1453 (2009)] in striking contrast to ordinary percolation. We consider a representative model which shows that the explosive percolation transition is actually a continuous, second order phase transition though with a uniquely small critical exponent of the percolation cluster size. We describe the unusual scaling properties of this transition and find its critical exponents and dimensions.  相似文献   

12.
We find all the exact eigenstates and eigenvalues of a spin-1/2 model on square lattice: H=16g Sum S(y)(i)S(x)(i + empty set x)S(y)(i + empty set x + empty set y)S(x)(i + empty set y). We show that the ground states for g < 0 and g > 0 have different quantum orders described by Z2A and Z2B projective symmetry groups. The phase transition at g = 0 represents a new kind of phase transition that changes quantum orders but not symmetry. Both the Z2A and Z2B states contain Z2 lattice gauge theories at low energies. They have robust topologically degenerate ground states and gapless edge excitations.  相似文献   

13.
We develop a percolation model for nodal domains in the eigenvectors of quantum chaotic torus maps. Our model follows directly from the assumption that the quantum maps are described by random matrix theory. Its accuracy in predicting statistical properties of the nodal domains is demonstrated for perturbed cat maps and supports the use of percolation theory to describe the wave functions of general Hamiltonian systems. We also demonstrate that the nodal domains of the perturbed cat maps obey the Cardy crossing formula and find evidence that the boundaries of the nodal domains are described by stochastic Loewner evolution with diffusion constant close to the expected value of 6, suggesting that quantum chaotic wave functions may exhibit conformal invariance in the semiclassical limit.  相似文献   

14.
We study the electronic structure of the binary alloy and (quantum) percolation model. Our study is based on a self-consistent scheme for the distribution of local Green functions. We obtain detailed results for the density of states, from which the phase diagram of the binary alloy model is constructed, and discuss the existence of a quantum percolation threshold.  相似文献   

15.
Above the upper critical field we have investigated the field dependences of the surface conductance, G'-iG" and the critical current J(c) of an electropolished pure niobium cylinder. The low frequency limits of G', G", and J(c) display power-law singularities, defining a transition to coherent surface superconductivity at H(c)(c3). The critical exponents as well as the dynamical scaling of G'-iG" are consistent with predictions for a two-dimensional percolation transition. Relating H(c)(c3) to the conventional onset field, we find H(c)(c3)/H(c3)=0.81, and, surprisingly, this ratio turns out to be independent of significant variations of H(c3) due to differently structured surfaces.  相似文献   

16.
安志云  李志坚 《物理学报》2017,66(13):130303-130303
在一维分立时间量子行走中,通过静态和动态两种方式随机地断开连接边引入无序效应,研究了静态逾渗和动态逾渗对量子行走传输特性以及位置自由度和硬币自由之间纠缠的影响.随着演化时间的增加,静态逾渗会使得量子行走从弹道传输转变为安德森局域化,而动态逾渗则会使之转变为经典扩散.理想情况下,量子纠缠在较短的时间内就达到一个常数值E_0.静态逾渗量子行走的纠缠减小,并随着时间做无规振荡,而动态逾渗量子行走的纠缠则会随着时间光滑地增加,并在某一时间超过理想情况下的常数值,表现出动态逾渗增强量子纠缠的特性.  相似文献   

17.
We study finite-temperature phase transitions in a two-dimensional boson Hubbard model with zero-point quantum fluctuations via Monte Carlo simulations of a quantum rotor model and construct the corresponding phase diagram. Compressibility shows a thermally activated gapped behavior in the insulating regime. Finite-size scaling of the superfluid stiffness clearly shows the nature of the Kosterlitz-Thouless transition. The transition temperature T(c) confirms a scaling relation T(c) proportional, rho(0)(x), with x=1.0. Some evidence of anomalous quantum behavior at low temperatures is presented.  相似文献   

18.
We study the dynamics of the Mott insulator-superfluid quantum phase transition in a periodic 1D array of Josephson junctions. We show that crossing the critical point at a finite rate with a quench time tau(Q) induces finite quantum fluctuations of the current around the loop proportional to tau(-1/6)(Q). This scaling could be experimentally verified with an array of weakly coupled Bose-Einstein condensates or superconducting grains.  相似文献   

19.
We characterize the non-Ohmic portion of the conductivity at temperatures T<1 K in the highly correlated transition metal chalcogenide Ni(S,Se)(2). Pressure tuning of the T = 0 metal-insulator transition reveals the influence of the quantum critical point and permits a direct determination of the dynamical critical exponent z = 2.7(+0.3)(-0.4). Within the framework of finite temperature scaling, we find that the spatial correlation length exponent nu and the conductivity exponent &mgr; differ.  相似文献   

20.
We report torque magnetization measurements in regions of the mixed state phase diagram ( B approximately mu(o)H(c2) and T(c)/10(3)) of the organic superconductor kappa-(ET)2Cu(NCS)(2), where quantum fluctuations are expected to dominate thermal effects. Over most of the field range below the irreversibility line ( B(irr)), magnetothermal instabilities are observed in the form of flux jumps. The abrupt cessation of these instabilities just below B(irr) indicates a quantum melting transition from a quasi-two-dimensional vortex lattice phase to a quantum liquid phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号