首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CO_2/二甲醚混合制冷剂跨临界制冷循环性能分析   总被引:1,自引:0,他引:1  
本文通过理论计算对CO_2/DME混合制冷剂替代CO_2的跨临界制冷循环特性进行了分析,结果表明:CO_2/DME混合制冷剂的质量配比范围为90/10~100/0时,可实现混合制冷剂的直接充灌.在相同的工况下,CO_2/DME跨临界制冷循环的最优高压侧压力降低了3 MPa,制冷系数提高4.3%;过热度对循环性能的影响,纯质CO_2要大于混合工质CO_2/DME.  相似文献   

2.
本文采用RNG k-ε湍流模型对超临界CO2/DME(二甲醚)二元混合工质在竖直圆管内的传热特性进行了数值模拟研究。管径4 mm,管长为1000 mm;CO2/DME浓度配比分别为97/3、95/5、92/8、90/10、85/15、以及70/30;质量流速为125~200 kg·m-2.s-1;热流密度为15~30 kW.m-2,入口温度295~308 K,入口压力8~15 MPa。不同浓度配比的混合工质在各自临界压力下应用时,随着DME浓度的增加,换热系数的峰值逐渐减低,但在温度大于310 K时混合工质的换热系数会高于纯CO2。压力相同时,随着DME浓度的增大,拟临界温度升高,换热系数峰值点也随之向温度升高的方向移动。混合工质的换热系数随质量流速的增大而增大。在拟临界点前,增大热流密度及降低压力对管内传热有利,而在拟临界点之后,换热系数随热流密度的升高以及压力的降低而降低。  相似文献   

3.
以CO_2为工质,对空气源热泵热水器矩形螺旋套管气体冷却器的换热特性进行实验研究,搭建了空气源热泵热水器实验台,测试分析冷却水流量的变化对冷却水进出口温差、CO_2进出口压力与温度、CO_2质量流量、气体冷却器总换热量、总传热系数及热泵系统COP等参数的影响,探究其对气体冷却器换热性能的变化规律。结果表明:随着冷却水流量的增加,冷却水进出口温差、CO_2进出口压力和温度均呈下降趋势,CO_2质量流量则呈上升趋势;气体冷却器的总换热量增加49.70%,总传热系数增加57.55%,COP增加73.41%,增幅较大;而气体冷却器换热效能系数仅增加1.77%,变化趋势不明显。  相似文献   

4.
在热泵热水器名义工况下,基于换热器中传热窄点温差的限制,对R32/R290二元混合制冷剂在不同质量配比下热泵循环系统特性进行了热力学计算分析。结果表明,相同工作条件下,混合制冷剂R32/R290的最优质量配比为16/84,系统制热性能系数COPh为4.644,较R22系统提高了6.7%,分别比纯质的R32和R290系统高出3.2%和16.8%;在最优质量配比下,系统冷凝压力为2.308MPa,系统压比为2.793,压缩机排气温度为71.88℃。  相似文献   

5.
针对双热源热泵系统,理论分析了三种混合工质R245fa/R134a、R245fa/R152a和R245fa/RC270随R245fa质量分数变化时的系统热力学性能。结果表明:混合工质在特定配比时,系统热力学性能明显优于上述任一种纯工质。出口水温为80℃时,R245fa/R134a、R245fa/R152a和R245fa/RC270分别在R245fa质量分数为0.64、0.7和0.88时系统COP取得最大值,其值相应为4.74、4.68和5.15。三种混合工质中R245fa/RC270(0.88/0.12)的性能最高,与纯工质R152a相比,COF提高了约20%,产生单位质量热水的耗功降低了16.6%,并且压缩机排气温度和排气压力大幅降低。利用T-Q图分析了蒸发器和冷凝器中冷热流体间的温度匹配特性,发现采用混合工质后换热器中冷热流体的温度匹配性能明显变好,其中R245fa/RC270(0.88/0.12)温度匹配最佳。  相似文献   

6.
为优化CO_2热泵热水系统的循环性能,分析了CO_2/R1270, CO_2/R290, CO_2/R32, CO_2/R41混合制冷剂的饱和蒸汽压力、临界压力、温度滑移、COP,最终筛选出符合要求的R41。针对CO_2/R41混合制冷剂的单位制冷量/制热量、压缩机的压缩比、排气温度进行进一步实验分析,结果表明:CO_2/R41(70/30)系统的COP比纯CO_2系统增加7%,在设定工况下CO_2/R41(50/50)系统单位质量制冷量增加26.1%,单位质量制热量增加18.3%。CO_2/R41混合物可有效降低跨临界循环压缩机的压缩比及排气温度。  相似文献   

7.
混合工质高温水源热泵计算机模拟   总被引:3,自引:0,他引:3  
针对高温混合工质热水热泵,本文提出了纯质及混合工质的热泵模拟程序;本程序详细考虑了混合工质纯传递特性对换热的影响,在只输入热泵系统结构参数以及外部换热参数的条件下,应用本程序能进行热泵系统冷热水温度、换热器温度场、制冷制热量及系统的性能参数计算。  相似文献   

8.
利用新搭建的测量制冷剂/润滑油混合物互溶性的实验系统,实验测量了DME/矿物油、DME/酯类油和三种配比的混合制冷剂DME/R125与矿物油的临界互溶温度。结果表明:DME作为制冷剂与各类润滑油都具有良好的互溶性;DME/R125与矿物油的互溶性,随混合制冷剂中DME比例的增加,临界互溶温度降低。  相似文献   

9.
在名义工况下建立热泵热水器系统的热力学循环模型,利用EES分别计算三种HCs纯工质及其与HFO1234yf混合工质的热泵性能。结果显示:R1234yf/R600(Z_1)和R1234yf/R600a(Z_2)均在质量分数(10/90)处出现最大制热COP值,分别为3.413和3.305,R1234yf/R290(Z_3)则出现单调递减的趋势。在最优配比(10/90)情况下,混合工质Z_1系统排气温度为76.26℃,冷凝压力为0.681 MPa,压比为6.284,制热量为193.6 J/g,■效率为0. 212;系统Z_2、Z_3及纯工质R600、R600a、R290的制热性能系数COP分别较Z_1降低3.06%、3.09%、13.94%、5.10%、5.66%。Z_1具有较好的热力学性能,有望成为替代工质。  相似文献   

10.
开展高温热泵混合工质的理论研究,分析采用不同非共沸混合工质时热泵系统的热力学性能、经济性和环境性。研究结果表明:与纯工质相比,采用R161/R245fa(0.3/0.7)、RC270/R245fa(0.2/0.8)和R245fa/R290(0.7/0.3)等优选的十三种混合工质时,热泵系统的压缩机排气温度与压力均有下降,系统COP明显提升,其中采用R161/R245fa(0.3/0.7)混合工质时热泵系统的COP最高。采用混合工质时热泵系统的投资回收期均相对于纯工质有所降低,其中采用propyne/R245fa(0.3/0.7)时热泵系统的投资回收期最短,其后依次为R161/R245fa(0.3/0.7)、RC270/R600(0.5/0.5)、R161/1butene(0.3/0.7)、RC270/R245fa(0.2/0.8)等。同时,相对于其他混合工质,采用R161/R245fa(0.3/0.7)、RC270/R245fa(0.2/0.8)和R245fa/R290(0.7/0.3)时热泵系统的TEWI值较低,环境性更好。综合而言,采用R161/R245fa(0.3/0.7)、RC270/R245fa(0.2/0.8)、R245fa/R290(0.7/0.3)、R600/R1270(0.6/0.4)和R161/R600(0.4/0.6)等五种混合工质时综合性能较好,其中采用R161/R245fa(0.3/0.7)时热泵系统综合性能最佳。  相似文献   

11.
采用SST k-w湍流模型对超临界CO2/丙烷混合工质水平管内的传热特性进行数值模拟研究。管径d=4 mm,加热段L2=800 mm;混合工质浓度配比为100/0、95/5、90/10、85/15、80/20、75/25;质量流速为150~250 kg·m?2·s?1;热流密度为30~40 kW·m?2,入口温度293 K,入口压力7.5~30 MPa。随着丙烷浓度的增加,CO2/丙烷二元混合工质的临界压力降低,临界温度升高,丙烷浓度从5%增加到25%,换热系数峰值降低6.19%~31.45%,但增加丙烷浓度可提高拟临界温度后的换热效果。P=7.5~8.5 MPa,换热系数有明显峰值;P=20~30 MPa,换热系数变化规律无明显峰值,并随压力的升高而减小。混合工质的换热系数随质量流速的增大而增大。同一流体温度所对应的换热系数,随着热流密度的增加而减小。  相似文献   

12.
采用SST k-w湍流模型对超临界CO2/丙烷混合工质水平管内的传热特性进行数值模拟研究。管径d=4 mm,加热段L2=800 mm;混合工质浓度配比为100/0、95/5、90/10、85/15、80/20、75/25;质量流速为150~250 kg·m?2·s?1;热流密度为30~40 kW·m?2,入口温度293 K,入口压力7.5~30 MPa。随着丙烷浓度的增加,CO2/丙烷二元混合工质的临界压力降低,临界温度升高,丙烷浓度从5%增加到25%,换热系数峰值降低6.19%~31.45%,但增加丙烷浓度可提高拟临界温度后的换热效果。P=7.5~8.5 MPa,换热系数有明显峰值;P=20~30 MPa,换热系数变化规律无明显峰值,并随压力的升高而减小。混合工质的换热系数随质量流速的增大而增大。同一流体温度所对应的换热系数,随着热流密度的增加而减小。  相似文献   

13.
本文对R134a、R290、R600a及R600等四种制冷剂用于双回路耦合制冷系统的性能进行模拟计算。其中R600的当量性能系数最高、单位质量制冷量最大而容积制冷量最小;R600a排气温度最低;R290循环压比最小。对由R290、R600及R600a组成的不同混合制冷剂进行模拟计算,当小端温差一定时,混合制冷剂当量性能系数高于纯质;当有效换热温差一定时,混合制冷剂R290/R600a当量性能系数与纯质R600相当,循环压比稍高于R290,最高排气温度低于所选纯质制冷剂.  相似文献   

14.
《低温与超导》2021,49(3):78-83
针对传统制冷剂R22和R134a在中高温领域的使用限制,探究以R22,R134a为核心的非共沸混合工质在热泵系统中的应用,通过建立混合工质在系统循环中的热力学模型对初步筛选的六种高温工质进行系统循环模拟分析,探讨热泵系统在设定工况下最适宜的混合工质及其配比,结果表明:冷凝区间60~80℃内,R22+R124和R134a+R142b相比其他组合有较好的循环性能,在冷凝温度为75℃,蒸发温度分别为20℃、7℃、0℃三种工况下,R22+R124的最适宜配比为0.65/0.35、0.4/0.6和0.3/0.7,R134a+R142b的最适宜配比为0.8/0.2,并且与R22+R142b进行比较,在对应工况下,R22+R124的单位容积制热量是R22+R142b的1.33、1.26和1.24倍。  相似文献   

15.
《低温与超导》2021,49(6):93-98
针对CO_2(R744)制冷剂在制冷系统中压力过高,效率较低的缺点,现有人工制冷剂环保性差,即将被淘汰等问题,提出了用于改良CO_2制冷剂的混合制冷剂R744/R152a。使用ASPEN HYSYS建立了仿真系统,并通过仿真结果确定了新型制冷剂的最优配比,为R744/R152a:0.875/0.125,通过进一步的仿真分析,发现新型混合制冷剂的COP、制热量、制冷量都有很大提升,排气压力与CO_2相比降低了1.6—1.8MPa,对CO_2制冷剂的应用与发展提供了新的思路。  相似文献   

16.
采用CO_2天然混合制冷剂的制冷系统热力学分析   总被引:1,自引:1,他引:0  
受工况条件的限制,CO2制冷系统在实际应用中往往需要采用跨临界循环,高压侧压力高达10MPa及以上。高的运行压力对系统各部件、设备的安全运行均提出更高要求,从而造成初投资增大。采用CO2混合工质,可以有效地改善纯的CO2系统存在的不足。针对三组CO2天然混合工质——R744/R290、R744/R600、R744/R600 a,在特定的工况条件下,对制冷系统进行了热力学理论分析和计算。探讨了混合工质中CO2不同质量配比、不同蒸发器出口制冷剂温度对系统制冷量、COP和冷凝压力的影响。结果表明:在相同工况下,R744/R290的冷凝压力比R744R/600高12~23%,比R744/R600 a高19~24%;R744/R290的COP值比R744/R600高33~41%,比R744/R600 a高25~32%。  相似文献   

17.
工业生产中存在大量的70~80℃的余热未被回收利用,如果利用热泵将这部分余热转化为高品质工业蒸汽则可大大降低工业能耗和污染物排放。本文研究一种回收废水余热制取蒸汽的高温热泵系统,在蒸发器侧水进出口温度80/70℃和冷凝器侧水进出口温度90/120℃设计工况下,针对该换热过程"大温差"和"高冷凝"的换热特点分析对比不同非共沸工质的循环性能。首先对比了多种二元混合工质的循环性能,得到性能较为优良的混合工质R124/R141b(0.45/0.55).为保证压缩机安全运行添加第三元组分以降低排气温度和压力,结果表明:三元工质R365mfc/R124/R141b(0.55/0.405/0.045)综合性能较佳,其COP达到4.9,并且单位容积制热量为4110 kJ/m~3,同时排气温度125℃和冷凝压力为1595 kPa,综合性能优越并满足压缩机安全运行要求。  相似文献   

18.
非常规工质动力循环具有高效回收低品位热能的显著优势,CO_2环境友好,是较为理想的利用低品位热能的动力循环工质。采用理论和实验方法研究了CO_2跨临界动力循环的理论循环性能和膨胀机性能。研究结果表明,无回热时导热油出口温度随加热压力的升高而升高,并且不随膨胀机进口温度的变化而变化;有回热时导热油出口温度受回热器换热的影响存在极大值。随着超临界加热压力的升高,循环热效率和净输出功率存在极大值;回热能够显著提高循环热效率和净输出功率。初步实验结果表明内部泄露对CO_2滚动转子膨胀机性能具有重要影响,为提升膨胀机性能需尽量降低膨胀机内部泄露。  相似文献   

19.
本文提出的计算方法,可避免比热方程,而主要利用已有的纯工质物性数据和少量混合工质实验数据,包括汽液平衡数据和PVTx数据,以拟合Redlich-Kwong方程混合规则中的二元相关因子k和Wilson方程常数,对非共沸混合工质的焓、熵进行计算。文中以R12(1)-R142b(2)二元混合工质热泵循环为例作了热力计算及比较了不同组成配比下对热泵循环性能的影响。  相似文献   

20.
研究了将微通道换热器应用于CO_2循环中作为蒸发器的性能和其对CO_2系统性能的影响。实验结果表明,在系统中微通道换热器运行平稳,其在CO_2系统中作为蒸发器换热量可达3.75 kW,热量体积比为6.35×10~4 kW/m~3,微通道换热器制冷剂侧的换热系数最高可以达到8.5 kW/(m~2·K),微通道蒸发器换热效能达到90%以上,同时蒸发器制冷剂侧的压降在40 kPa以内,相对于CO_2跨临界循环的高运行压力,压力损失很小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号