首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 294 毫秒
1.
Quinlan F  Gee S  Ozharar S  Delfyett PJ 《Optics letters》2006,31(19):2870-2872
We report a semiconductor-based, low-noise, 10.24 GHz actively mode-locked laser with 4.65 fs of relative timing jitter and a 0.0365% amplitude fluctuation (1 Hz to 100 MHz) of the optical pulse train. The keys to obtaining this result were the laser's high optical power and the low phase noise of the rf source used to mode lock the laser. The low phase noise of the rf source not only improves the absolute and relative timing jitter of the laser, but also prevents coupling of the rf source phase noise to the pulse amplitude fluctuations by the mode-locked laser.  相似文献   

2.
We present experimental results for what is to our knowledge the first spectral-hole-burning based rf spectrum analyzer to cover 10 GHz of rf analysis bandwidth. The rf signal of interest is modulated onto an optical carrier, and the resultant optical sidebands are burned into the inhomogeneously broadened absorption band of a Tm3+:YAG crystal. At the same time a second, frequency-swept laser reads out the absorption profile, which is a double-sideband replica of the rf spectrum, and thus the rf spectrum can be deduced after spectral calibration of the nonlinear readout chirp. This initial demonstration shows spectral analysis covering 10 GHz of bandwidth with >5500 spectral channels and provides 43 dB of dynamic range.  相似文献   

3.
We present a new optical control scheme for a laser interferometric gravitational wave detector that has a high degree of tolerance to interferometer spatial distortions and noise on the input light. The scheme involves resonating the rf sidebands in an interferometer arm cavity.  相似文献   

4.
We report the first realization of a guided quasicontinuous atom laser by rf outcoupling a Bose-Einstein condensate from a hybrid optomagnetic trap into a horizontal atomic waveguide. This configuration allows us to cancel the acceleration due to gravity and keep the de Broglie wavelength constant at 0.5 microm during 0.1 s of propagation. We also show that our configuration, equivalent to pigtailing an optical fiber to a (photon) semiconductor laser, ensures an intrinsically good transverse mode matching.  相似文献   

5.
Kim J  Kärtner FX  Perrott MH 《Optics letters》2004,29(17):2076-2078
A synchronization scheme for extraction of low-jitter rf signals from optical pulse trains, which is robust against photodetector nonlinearities, is described. The scheme is based on a transfer of timing information into an intensity imbalance of the two output beams from a Sagnac loop. Sub-100-fs timing jitter between the extracted 2-GHz rf signal and the 100-MHz optical pulse train from a mode-locked Ti:sapphire laser is demonstrated.  相似文献   

6.
We describe and demonstrate a novel technique for continuously tuning the frequency of a dual-loop-configuration optoelectronic rf oscillator. The rf tunability is obtained from a tunable diode laser and dispersive optical fibers. Results are presented for three ranges of frequency, centered at 550 MHz, 3 GHz, and 9 GHz. The frequency can be tuned electrically with constant rf power within a range of 0.1-1.9 MHz, depending on the center oscillation frequency. The tuning range can be increased eightfold through the use of highly dispersive fibers.  相似文献   

7.
We describe a new and highly effective optical frequency discriminator and laser stabilization system based on signals reflected from a stable Fabry-Perot reference interferometer. High sensitivity for detection of resonance information is achieved by optical heterodyne detection with sidebands produced by rf phase modulation. Physical, optical, and electronic aspects of this discriminator/laser frequency stabilization system are considered in detail. We show that a high-speed domain exists in which the system responds to the phase (rather than frequency) change of the laser; thus with suitable design the servo loop bandwidth is not limited by the cavity response time. We report diagnostic experiments in which a dye laser and gas laser were independently locked to one stable cavity. Because of the precautions employed, the observed sub-100 Hz beat line width shows that the lasers were this stable. Applications of this system of laser stabilization include precision laser spectroscopy and interferometric gravity-wave detectors.  相似文献   

8.
We demonstrate sub-nanosecond range and unambiguous sub-50-Hz Doppler resolved laser radar (LADAR) measurements using spectral holographic processing in rare-earth ion doped crystals. The demonstration utilizes pseudo-random-noise 2 giga-sample-per-second baseband waveforms modulated onto an optical carrier.  相似文献   

9.
We demonstrate optically detected spin resonance of a single electron confined to a self-assembled quantum dot. The dot is rendered dark by resonant optical pumping of the spin with a laser. Contrast is restored by applying a radio frequency (rf) magnetic field at the spin resonance. The scheme is sensitive even to rf fields of just a few microT. In one case, the spin resonance behaves as a driven 3-level lambda system with weak damping; in another one, the dot exhibits remarkably strong (67% signal recovery) and narrow (0.34 MHz) spin resonances with fluctuating resonant positions, evidence of unusual dynamic processes.  相似文献   

10.
Spectral line‐by‐line shaping is a key enabler towards optical arbitrary waveform generation, which promises broad impact both in optical science and technology. In this paper, generation of optical and microwave arbitrary waveforms using the spectral line‐by‐line shaping technique is reviewed. Compared to conventional pulse shaping, significant new physics arises in the line‐by‐line regime, where the shaped pulse fields generated from one laser pulse now overlap with those generated from adjacent pulses. This leads to coherent interference effects related to the properties of optical frequency combs which serve as the source in these experiments. We explore such effects in a series of experiments using several different high‐repetition‐rate optical combs, including harmonically mode‐locked lasers and continuous‐wave lasers that are externally phase modulated either with or without the help of an optical cavity. As an application of line‐by‐line pulse shaping, we describe generation of microwave electrical arbitrary waveforms that can be reprogrammed at rates approaching 10 GHz.  相似文献   

11.
The use of a pulsed laser for the generation of the elastic waves in non-metallic materials in the thermoelastic regime is investigated by using finite element method (FEM), taking into account not only thermal diffusion and the finite spatial and temporal shape of the laser pulse, but also optical penetration and the temperature dependence of material properties. The optimum finite element model is established based on analysis of two important parameters, meshing size and time step, and the stability of solution. Temperature distributions and temperature gradient fields in non-metallic material for different time steps are obtained, this temperature field is equivalent to a bulk force source to generate ultrasonic wave. The laser-generated ultrasound waveforms at the epicenter and surface acoustic waveforms (SAWs) are obtained and the influence of optical penetration into the material on the temperature field and the ultrasound waveforms are analyzed. The numerical results indicate that the heat penetration into non-metallic material is caused mainly by the optical penetration, and the ultrasound waveforms, especially the shape of the precursor, are strongly dependent on the optical penetration depth into non-metallic material.  相似文献   

12.
Spin-polarized hydrogen was produced by laser optical pumping of rubidium and subsequent spin exchange with hydrogen atoms created by an rf discharge. Initial experiments produced approximately 1014 hydrogen atoms with a polarization of about 64%. Utilization of a suitable wall coating will allow significant improvement in these results.  相似文献   

13.
A mid-infrared free electron laser (FEL) has been constructed for energy science in the Institute of Advanced Energy, Kyoto University. The FEL system consists of a compact S-band Linac and an undulator to generate 4–13 μm coherent mid-infrared radiations. The Linac consists of a 4.5 cell rf gun with a thermionic cathode and a 3-m traveling-wave-type accelerator tube fed by 10 MW and 20 MW rf power, respectively. We have succeeded to produce 40 MeV, 40 mA and 3 μs electron beams. Last December, the 9.2 μm spontaneous emission from the undulator generated by 29.5 MeV electron beams was observed for the first time. Further optimization parameters of both the electron beam and the optical cavity are being pursued for an FEL lasing in the near future.  相似文献   

14.
An efficient locking technique based on optical feedback is demonstrated to suppress jitter on the rf beat note between the two modes of a dual-frequency Yb:Er glass laser. The method consists of a self-injection process in which one selected mode serves as a master oscillator to lock and stabilize the second mode via a frequency-shifted optical feedback. The beat note adjusted near 170 MHz was stabilized with an accuracy of 250 mHz using an optical feedback loop with a double pass through an acousto-optic modulator. The beating note can be tuned over 300 kHz by controlling the reference oscillator. The extensions and limitations of the technique are discussed.  相似文献   

15.
Brandl MF  Mücke OD 《Optics letters》2010,35(24):4223-4225
Frequency-shifted feedback (FSF) lasers have emerged as powerful tools for precision distance metrology. At the output of a Michelson interferometer, the detected rf spectra of the FSF laser light contain a length-dependent heterodyne beat signal whose linewidth ultimately limits the achievable accuracy of length measurements. Here, we demonstrate a narrow-linewidth chirped frequency comb from an FSF Ti:sapphire ring laser seeded by a phase-modulated, ultra-low-phase-noise, single-frequency fiber laser. We experimentally investigate the influence of the seed laser linewidth on the resulting width and shape of the length-dependent rf beat signal. An ultranarrow heterodyne beat linewidth of <20 Hz is observed.  相似文献   

16.
冀炜邦  万金银  成华东  刘亮 《中国物理 B》2012,21(6):63701-063701
We describe a new electrode design for a grooved surface-electrode ion trap,which is fabricated in printed-circuitboard technology with segmented electrodes.This design allows a laser beam to get through the central groove to avoid optical access blocking and laser scattering from the ion trap surface.The confining potentials are modeled both analytically and numerically.We optimize the radio frequency(rf) electrodes and dc electrodes to achieve the maximum trap depth for a given ion height above the trap electrodes.We also compare our design with the reality ion chip MI I for practical considerations.Comparison results show that our design is superior to MI I.This ion trap design may form the basis for large scale quantum computers or parallel quadrupole mass spectrometers.  相似文献   

17.
The modulation characteristics of the negative nonlinear absorption effect were investigated in an erbium nitrate solution using a 1510 nm laser diode. The reversed-phase waveform was obtained in the transmitted laser for a sample length of 3.0 mm. With decrease in the modulation degree, the reversed-phase waveforms were observed at modulation degrees smaller than 72%. With increase in the modulation frequency, the transmitted waveforms were asymmetrical. The optical signal inversion phenomenon for 1.5μm can be explained by considering an excited state absorption in which energy transfer occurs in a system with high concentrations of the Er3+ ion.  相似文献   

18.
FM dye lasers     
We have investigated the detailed operation of a frequency modulated dye laser (FML). The FML consists of a standing wave Rh6G dye laser with an intracavity transverse ADP phase modulator which is driven at a frequency close to the cavity mode spacing. An ideal FML output consists of a laser beam which is constant in amplitude but sinusoidally varying in frequency. This provides a source of many laser modes which are equally spaced by the modulation frequency. Several dye laser configurations have been investigated. Measurements of the mode intensities, total power, amplitude modulation and rf beat amplitudes have been made as a function of the rf driving frequency of the phase modulator. The FM laser obtained has been frequency stabilised by locking it to a reference interferometer and also by frequency offset locking it to a single-frequency dye laser.  相似文献   

19.
We report a mode-locked Ti:sapphire femtosecond laser with 5GHz repetition rate. Spectral broadening of the 24 fs pulses in a microstructured fiber yields an octave-spanning spectrum and permits self-referencing and active stabilization of the emitted femtosecond laser frequency comb (FLFC). The individual modes of the 5 GHz FLFC are resolved with a high-resolution spectrometer based on a virtually imaged phased array spectral disperser. Isolation of single comb elements at a microwatt average power level is demonstrated. The combination of the high-power, frequency-stabilized 5 GHz laser and the straightforward resolution of its many modes will benefit applications in direct frequency comb spectroscopy. Additionally, such a stabilized FLFC should serve as a useful tool for direct mode-by-mode Fourier synthesis of optical waveforms.  相似文献   

20.
A phase-locked frequency comb in the near infrared is demonstrated with a mode-locked, erbium-doped, fiber laser whose output is amplified and spectrally broadened in dispersion-flattened, highly nonlinear optical fiber to span from 1100 to >2200 nm. The supercontinuum output comprises a frequency comb with a spacing set by the laser repetition rate and an offset by the carrier-envelope offset frequency, which is detected with the standard f-to-2f heterodyne technique. The comb spacing and offset frequency are phase locked to a stable rf signal with a fiber stretcher in the laser cavity and by control of the pump laser power, respectively. This infrared comb permits frequency metrology experiments in the near infrared in a compact, fiber-laser-based system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号