首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
At the vacuum ultraviolet (VUV) free electron laser in Hamburg (FLASH) an infrared (IR) beamline is being built to allow novel pump-and-probe experiments combining coherent IR pulses with the FEL radiation in the VUV spectral range. It will provide useful IR radiation generated by a purpose built undulator over the wavelength range from 200 μm to 10 μm and possibly even shorter. The commissioning of the beamline has started this summer and first light will be delivered to the experimental hall by autumn 2007. Another important application of the beamline will be electron diagnostics of the longitudinal charge distribution of the electron bunches.  相似文献   

2.
北京自由电子激光装置的设计研究   总被引:4,自引:2,他引:2  
北京自由电子激光装置(BFEL)是一台工作在中红外区的康普顿型FEL振荡器。由一台30MeV的射频电子直线加速器提供电子束。特点之一是用微波电子枪作为高亮度注入器。本文首先概述了BFEL的一般情形和物理参数.接着用解析公式和模拟的方法论证了电子束的设计目标和激光器的运转特征。最后阐述了BFEL各部分采取的技术路线的特点,内容包括微波枪、加速器和微波系统、调制器、输运系统、摇摆磁铁、光学腔、电子束诊断、准直、自发辐射和激光实验。  相似文献   

3.
Free electron laser (FEL) and self-amplified spontaneous emission (SASE) are being developed in the far-infrared region using the L-band electron linac at the Institute of Scientific and Industrial Research (ISIR), Osaka University. The L-band linac was recently remodeled extensively not only for higher operational stability and reproducibility but also for high power operation of FEL. After commissioning of the linac, we first began SASE experiment with a newly-developed strong-focusing wiggler. Recently we began FEL experiment and obtained lasing with the high peak power at 70 μm again after a long break.  相似文献   

4.
Turkish accelerator complex (TAC) project was approved by State Planning Organization (DPT) of Turkey in 2006. The complex will contain a linac-ring type electron–positron collider as a particle factory and different accelerator based light sources. As a first step to the national center, the construction of an IR FEL facility is planned until 2011. It is also planned that the technical design report for TAC will be completed in 2010. The TAC IR FEL facility will consist of an electron linac in the range of 15–40 MeV energy to obtain FEL in 2–185 microns range. In this study, the preliminary parameters of TAC IR FEL facility were presented. The possible using of the obtained FEL in material science, nonlinear optics, semiconductors, biotechnology, medicine and photochemical processes were discussed.  相似文献   

5.
A new design for a single pass X-ray Self-Amplified Spontaneous Emission (SASE) FEL is proposed. The scheme consists of two undulators and an X-ray monochromator located between them. The first stage of the FEL amplifier operates in the SASE linear regime. After the exit of the first undulator the electron bunch is guided through a non-isochronous bypass and the X-ray beam enters the monochromator. The main function of the bypass is to suppress the modulation of the electron beam induced in the first undulator. This is possible because of the finite value of the natural energy spread in the beam. At the entrance to the second undulator the radiation power from the monochromator dominates significantly over the shot noise and the residual electron bunching. As a result the second stage of the FEL amplifier operates in the steady-state regime when the input signal bandwidth is small with respect to that of the FEL amplifier. Integral losses of the radiation power in the monochromator are relatively small because grazing incidence optics can be used. The proposed scheme is illustrated for the example of the 6 nm option SASE FEL at the TESLA Test Facility under construction at DESY. As shown in this paper the spectral bandwidth of such a two-stage SASE FEL (Δλ/λ 5 × 10−5) is close to the limit defined by the finite duration of the radiation pulse. The average brilliance is equal to 7 × 1024 photons/(s × mrad2 × mm2 × 0.1% bandw.) which is by two orders of magnitude higher than the value which could be reached by the conventional SASE FEL. The monochromatization of the radiation is performed at a low level of radiation power (about 500 times less than the saturation level) which allows one to use conventional X-ray optical elements (grazing incidence grating and mirrors) for the monochromator design.  相似文献   

6.
Power and spectral measurements are reported from the Columbia Raman free-electron laser (FEL) oscillator experiment. High-power radiation pulses (~12 MW, 100 ns) are generated at a wavelength of ~2.5 mm, using a 750-kV electron beam injected into a helical undulator. The undulator is made up of a 40-cm long constant-period (1.45 cm) section followed by an equal length of tapered undulator. The period is decreased by 7.6% in such a way that the on-axis field remains constant. It is reported that the taper allows an increase in total power efficiency from ~4 to ~12%. Most noteworthy is that the tapered undulator reduces the sideband radiation compared with a constant-period undulator FEL which is studied in the same configuration. The power was measured calorimetrically and compared with the results of a 1-D Raman code. The reduction of sideband power observed in the experiment was consistent with computational results obtained with a 2-D sideband code  相似文献   

7.
The paper reports numerical calculations appropriate for the design of an "efficiency-enhanced" Raman free electron laser (FEL) oscillator. A helical undulator is used which consists of a constant period section followed by a section where the period is decreased roughly 10 percent. Simulation of the FEL is done by following the radiation dynamics in both the small- and large-signal regimes, using the "generalized pendulum equation" with self-consistent radiation field. It is found that the efficiency of the oscillator may be enhanced from ? 8 (no taper) to ? 15 percent (with taper). The configuration of an experimental oscillator is described; this device should produce ? 25 MW at a wavelength ? 1.8 mm using an 800-kV electron beam.  相似文献   

8.
CRRFA-30L波段射频加速器   总被引:1,自引:1,他引:0       下载免费PDF全文
 主要介绍CRRFA-30L波段射频加速器结构和性能,论述了热阴极射频腔注入器、束流加速系统、微波功率源和控制等结构中主要技术及其研究进展,给出了加速器输出束流参数测量与测量结果分析,达到设计应用要求。  相似文献   

9.
A paper by Jerby (1990) has discussed a number of mechanisms whereby FEL radiation may be directed electronically into different radiation patterns. We have devised an experiment (1992) to test this concept using the Columbia microwave FEL, which amplifies radiation at 24 GHz to a level <1 MW. A 4 mm dia, electron beam (580 kV) is propagated in a guiding field of 0.8 T inside an overmoded 24 mm dia. cylindrical waveguide. A TE11 mode is grown in a 33 cm long first undulator section (period 3.36 cm), and upon entering the following undulator section (period 2.26 cm, length 40 cm), the electron bunches convert to TM11 radiation which is further amplified. The far-field pattern of the TM11 emitted power is distinct from the TE11 pattern. Numerical and experimental studies are described in this paper showing the resulting radiation pattern.<>  相似文献   

10.
A multi-band focal plane array sensitive in near-infrared (near-IR) and mid-wavelength infrared (MWIR) is been developed by monolithically integrating a near-infrared (1–1.5 μm) p–i–n photodiode with a mid-infrared (3–5 μm) QWIP. This multiband detector involves both intersubband and interband transitions in III–V semiconductor layer structures. Each detector stack absorbs photons within the specified wavelength band, while allowing the transmission of photons in other spectral bands, thus efficiently permitting multiband detection. Monolithically grown material characterization data and individual detector test results ensure the high quality of material suitable for near-infrared/QWIP dual-band focal plane array.  相似文献   

11.
The development of free electron lasers (FELs) with a compact storage ring NIJI-IV in the near- and middle-infrared regions has been advanced at the National Institute of Advanced Industrial Science and Technology. The optical klystron ETLOK-III was installed in one of the long straight sections of the NIJI-IV, and spontaneous emission spectra were observed in the visible and near-infrared regions. Optical cavity chambers for infrared FELs were installed this February, and it was confirmed that the vibration amplitude of the optical cavity chambers was below 0.5 μm in an optical beam axis. FEL experiments in the near-infrared region will be performed this winter.  相似文献   

12.
Generation of X-ray radiation in a cascade self-amplified spontaneous emission free-electron laser (SASE FEL) using the harmonics of a two-frequency undulator is studied. The advanced phenomenological model of a one-pass FEL that accounts for the main losses in real FELs is presented: the electron energy spread in the beam, the beam divergence, diffraction, and the fact that emission losses are greater at higher harmonics than in the main frequency range. The FEL mathematical model was performed using the Mathematica software and calibrated within the experiment carried out at the operating SPARC facility via complex three-dimensional numerical simulations. The phenomenological model is used to analyze FEL dynamics for generation of a high-energy X-ray emission at a relatively short length. It is proposed to use a two-frequency undulator for the initial electron grouping and subsequent frequency multiplication in a cascade FEL with higher harmonic amplification (HGHG). The advantages of the two-frequency undulator are presented for electron grouping at higher harmonics of the undulator radiation (UR). The operation of several types of FEL is simulated with amplification of the seed laser wave frequency in two and three cascades to generate the soft X-ray radiation. A seed laser with a wavelength of 11.43 nm corresponding to the peak reflectivity of mirror coatings with MoRu/Be is proposed for generating the intensive X-ray laser radiation with λ ~ 1.27–3.37 nm. Here, the intensive radiation power reaches 50 MW at a length of only 35 meters; the radiation shows good temporal coherence corresponding to the performance of a low-power seed laser with a lower frequency.  相似文献   

13.
We report output power and frequency measurements of a pulsed free electron laser (FEL) operating as an amplifier at 35 GHz, without guiding field. The experiment used an induction linac, which delivers an 800-A relativistic electron beam (2.2 MeV) with a flat-top of 40 ns into the helical wiggler. The input signal furnished by a 35-GHz magnetron source is amplified to power levels of the order of 80 MW. The experimental results are in good agreement with our simulations. Frequency chirping is observed, and its behavior as a function of the basic FEL parameters is discussed  相似文献   

14.
We report on the status of GaSb/InAs type-II superlattice diodes grown and fabricated at the Jet Propulsion Laboratory designed for infrared absorption 2–5 μm and 8–12 μm bands. Recent LWIR devices have produced detectivities as high as 8 × 1010 Jones with a differential resistance–area product greater than 6 Ohm cm2 at 80 K with a long wavelength cutoff of approximately 12 μm. The measured internal quantum efficiency of these front-side illuminated devices is close to 30% in the 10–11 μm range. MWIR devices have produced detectivities as high as 8 × 1013 Jones with a differential resistance–area product greater than 3 × 107 Ohm cm2 at 80 K with a long wavelength cutoff of approximately 3.7 μm. The measured internal quantum efficiency of these front-side illuminated MWIR devices is close to 40% in the 2–3 μm range at low temperature and increases to over 60% near room temperature.  相似文献   

15.
An optimization of the undulator layout of X‐ray free‐electron‐laser (FEL) facilities based on placing small chicanes between the undulator modules is presented. The installation of magnetic chicanes offers the following benefits with respect to state‐of‐the‐art FEL facilities: reduction of the required undulator length to achieve FEL saturation, improvement of the longitudinal coherence of the FEL pulses, and the ability to produce shorter FEL pulses with higher power levels. Numerical simulations performed for the soft X‐ray beamline of the SwissFEL facility show that optimizing the advantages of the layout requires shorter undulator modules than the standard ones. This proposal allows a very compact undulator beamline that produces fully coherent FEL pulses and it makes possible new kinds of experiments that require very short and high‐power FEL pulses.  相似文献   

16.
太赫兹自由电子激光的受激饱和实验   总被引:2,自引:0,他引:2       下载免费PDF全文
中国工程物理研究院基于半导体光阴极高压直流电子枪和超导直线加速器的高平均功率太赫兹自由电子激光达到了受激饱和,并实现了太赫兹光输出频率可调.在1.99,2.41和2.92 THz三个频率点上进行测试,测得太赫兹宏脉冲内平均功率大于10 W,最高达17.9 W.本文介绍了太赫兹自由电子激光装置的主要组成部分及受激饱和实验的结果.  相似文献   

17.
The imaging properties of a Fresnel zone-plate (FZP) were used for magnified imaging of microobjects using hard X-rays. The experiments were done using 14 keV synchrotron radiation. The coherence properties of the radiation produced by an undulator allowed the recording of real images and holograms from an object in one single exposure. These images result from the positive and the negative first order diffracted beams respectively. The X-ray microscope worked at an X-ray magnification factor of 12 and could resolve structures of 0.3 μm in size. By going to slightly defocused conditions we obtained magnified images of the holographical nearfield diffraction pattern (in-line holograms) of the object.  相似文献   

18.
俞成  蒋志强  周巧根 《强激光与粒子束》2018,30(8):085104-1-085104-4
波荡器磁中心轴的标定是保证自由电子激光装置波荡器安装准直精度的重要前提。介绍了一种利用磁靶标实现波荡器磁中心高精度标定的方法。设计制造了由若干块永磁块组合构成的磁靶标,其能产生一正一斜两个高梯度四极场。测出了两四极场垂直分量的零点位置分布并依此给出了磁靶标的具体使用方法。结果表明:标定后的波荡器磁中心在磁靶标坐标系中水平方向测量精度好于±20 μm,垂直方向测量精度好于±2 μm。  相似文献   

19.
波荡器是基于自由电子激光的小型THz源关键器件, 其可调节的周期性磁场结构与两端的光腔配合, 使得穿越的电子束产生带增益的相干辐射, 最终达到THz源所需要的功率. 同纯永磁结构相比, 混合型波荡器通过软铁材料调节由永磁块磁化方向性差异导致的磁场分布误差, 同时可提供更高的场强. 本文针对小型THz源需求, 对混合型波荡器进行了相关物理设计. 在解析方法分析的基础上, 采用OPERA3D/TOSCA有限元分析软件, 对波荡器进行了三维磁场数值模拟和积分场优化. 通过对波荡器端部结构的调整, 优化后模型的一次场积分(导向误差)小于0.01Gs﹒m, 电子轨迹偏移小于0.02mm.  相似文献   

20.
The authors examine the characteristics of the classical radiation emitted by a relativistic electron beam that propagates perpendicularly through a large amplitude relativistic plasma wave. Such a study is useful for evaluating the feasibility of using relativistic plasma waves as extremely short wavelength undulators for generating short wavelength radiation. The electron trajectories in a plasma wave undulator are obtained using perturbation techniques and are then compared to numerical simulation results. The frequency spectrum and angular distribution of the spontaneous radiation emitted by a single electron and the stimulated radiation gain are obtained analytically, and are then compared to 3-D numerical simulations. The characteristics of the plasma wave undulator are compared to the AC free-electron laser (FEL) undulator and the conventional FEL  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号