首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 421 毫秒
1.
A potential scheme is proposed to deterministically generate complete sets of entangled photons in the context of cavity quantum electrodynamics (QED). The scheme includes twice interactions of atoms with cavities, in which the first interaction is made in two-mode optical cavities and the second one exists in a microwave cavity. In the optical cavities the atoms are resonant with the cavity modes, while the detuned interaction of the atoms with a singlemode of the microwave cavity is driven by a classical field. The favorable features of our scheme include : ( 1 ) it is very straightforward in implementation because we carry out the scheme by only sending atoms through the cavities. The requirement for the implementation is very close to the reach of current cavity QED techniques. (2) The com- plete set of the entangled two- or more-photon states can be generated deterministically by our scheme, and the implementation time remains constant with the size of the entangled photon states. (3) Our scheme is more efficient than previous proposals with cavities, and the generated photons may be collected much more efficiently, due to cavities, than previous proposals by spontaneous emission.  相似文献   

2.
吴韬  叶柳  倪致祥 《中国物理》2006,15(11):2506-2509
In this paper, we propose a scheme for transferring an unknown atomic entangled state via cavity quantum electrodynamics (QED). This scheme, which has a successful probability of 100 percent, does not require Bell-state measurement and performing any operations to reconstruct an initial state. Meanwhile, the scheme only involves atom--field interaction with a large detuning and does not require the transfer of quantum information between the atoms and cavity. Thus the scheme is insensitive to the cavity field states and cavity decay. This scheme can also be extended to transfer ring an entangled state of $n$-atom.  相似文献   

3.
An alternative scheme is proposed for generating the Greenberg-Horne-Zeilinger (GHZ) and W types of the entangled states with multiple superconducting quantum-interference device (SQUID) qubits in a single-mode microwave cavity field. In this scheme, there is no transfer of quantum information between the SQUIDs and the cavity, the cavity is always in the vacuum and thus the requirement on the quality of cavity is greatly loosened. In addition, during the process of the generation of the W entangled state, the present method does not involve a real excitation of intermediate levels. Thus, decoherence due to energy relaxation of intermediate levels is minimized.  相似文献   

4.
郑小娟  徐慧  方卯发  朱开成 《中国物理 B》2010,19(3):34207-034207
This paper proposes a simple scheme to generate a four-atom entangled cluster state in cavity quantum electrodynamics. With the assistantce of a strong classical field the cavity is only virtually excited and no quantum information will be transferred from the atoms to the cavity during the preparation for a four-atom entangled cluster state, and thus the scheme is insensitive to the cavity field states and cavity decay. Assuming that deviation of laser intensity is 0.01 and that of simultaneity for the interaction is 0.01, it shows that the fidelity of the resulting four-atom entangled cluster state is about 0.9886. The scheme can also be used to generate a four-ion entangled cluster state in a hot trapped-ion system. Assuming that deviation of laser intensity is 0.01, it shows that the fidelity of the resulting four-ion entangled cluster state is about 0.9990. Experimental feasibility for achieving this scheme is also discussed.  相似文献   

5.
林丽华 《中国物理 B》2009,18(2):588-592
A scheme is presented for generating entangled states of multiple atoms in a cavity. In the scheme the atoms simultaneously interact with a cavity mode, with the first atom driven by two classical fields and the other atoms driven by a classical field. Our scheme is valid even if the cavity decay rate is larger than the effective coupling strength, which is important for experiment. The generation of entangled states is conditional on the detection of a photon decaying from the cavity and thus the fidelity of the entangled state is insensitive to the detection inefficiency. Furthermore, the scheme can be applied to the case with any number of atoms in principle.  相似文献   

6.
Recently, Peng et al. [2010 Eur. Phys. J. D 58 403] proposed to teleport an arbitrary two-qubit state with a family of four-qubit entangled states, which simultaneously include the tensor product of two Bell states, linear cluster state and Dicke-class state. This paper proposes to implement their scheme in cavity quantum electrodynamics and then presents a new family of four-qubit entangled state |Ω/1234. It simultaneously includes all the well-known four-qubit entangled states which can be used to teleport an arbitrary two-qubit state. The distinct advantage of the scheme is that it only needs a single setup to prepare the whole family of four-qubit entangled states, which will be very convenient for experimental realization. After discussing the experimental condition in detail, we show the scheme may be feasible based on present technology in cavity quantum electrodynamics.  相似文献   

7.
We propose a scheme for controllably entangling the ground states of five-state W-type atoms confined in a cavity and realizing swap gate and phase gate operations. In this scheme the cavity is only virtually excited and the atomic excited states are almost not occupied, so the produced entangled states and quantum logic operations are very robust against the cavity decay and atomic spontaneous emission.  相似文献   

8.
疏静  刘中 《理论物理通讯》2010,53(6):1155-1159
We propose a scheme to generate two-atom maximally entangled state in cavity quantum electrodynamies (QED). The scheme can 5e extended to generation of entangled multi-atom Dicke states if we control the interaction time of atoms with cavity modes. We use adiabatically state evolution under large atom-cavity detuning, so the scheme is insensitive to atomic spontaneous decay. The influence of cavity decay on fidelity and success probability is discussed.  相似文献   

9.
邓黎  陈爱喜  徐彦秋 《中国物理 B》2008,17(10):3725-3728
In this paper, a scheme is proposed for remote state preparation (RSP) with cavity quantum electrodynamics (QED). In our scheme, two observers share two-atom nonmaximally entangled state as quantum channels and can realize remote preparation of state of an atom. We also propose a generalization for remote preparation of N-atom entangled state by (N+1)-atom GHZ-like state (N ≥ 2). By this scheme, one single-atom projective measurement is enough for the RSP of a qubit or N-atom entangled state, and the probability of success for RSP is unity. Furthermore, we have considered the case where observers use W-like state as quantum channels to realize RSP of a qubit. We compare our scheme with existing ones.  相似文献   

10.
顾斌  李传起  陈玉林 《中国物理 B》2009,18(6):2137-2142
We present a scheme for multiparty quantum remote secret conference (MQRSC) with pure entangled states, not maximally entangled multipartite quantum systems. The conferees first share a private quantum key, a sequence of pure entangled states and then use them to encode and decode the secret messages. The conferees exploit the decoy-photon technique to ensure the security of the transmission of qubits. This MQRSC scheme is more feasible and efficient than others.  相似文献   

11.
In this paper we propose a scheme for transferring quantum states and preparing quantum networks. Compared with the previous schemes, this scheme is more efficient, since three or four-dimensional quantum states can be transferred with a single step and information interchange of three-dimensional quantum states can be realized, which is a significant improvement. It is based on the resonant interaction of a three-mode cavity field with an atom. As a consequence, the interaction time is shortened greatly. Furthermore, we give some discussions about the feasibility of the scheme.  相似文献   

12.
By constructing the recovery operations of the protocol of remote implementation of partially unknown quantum operation of two qubits [An-Min Wang: Phys. Rev. A 74 (2006) 032317] with two-qubit Cnot gate and single qubit logic gates, we present a scheme to implement it in cavity QED. Long-lived Rydberg atoms are used as qubits, and the interaction between the atoms and the field of cavity is a nonresonant one. Finally, we analyze the experimental feasibility of this scheme.  相似文献   

13.
We consider a one-dimensional array of L identical coupled cavities, and each cavity is doped with a two-level qubit. Experimentally, it has been developed in several varieties by the newest technology. We find that the one-qubit quantum state can be perfectly transferred through the cavity array, and the entanglement between the first two qubits can also be transferred to the last two qubits. In addition, we successfully realized the entangling gate and swap gate in the coupled cavity array.  相似文献   

14.
We present a detailed study to analyze the Dicke quantum phase transition within the thermodynamic limit for an optomechanically driven Bose-Einstein condensate in a cavity. The photodetection-based quantum optical measurements have been performed to study the dynamics and excitations of this optomechanical Dicke system. For this, we discuss the eigenvalue analysis, fluorescence spectrum and the homodyne spectrum of the system. It has been shown that the normal phase is negligibly affected by the mechanical mode of the mirror while it has a significant effect in the superradiant phase. We have observed that the eigenvalues and the spectra both exhibit distinct features that can be identified with the photonic, atomic and phononic branches. In the fluorescence spectra, we further observe an asymmetric coherent energy exchange between the three degrees of freedom of the system in the superradiant phase arising as a result of optomechanical interaction and Bloch-Siegert shift.  相似文献   

15.
When the nonlinearity of nanomechanical resonator is not negligible,the quantum decoherence of charge qubit is studied analytically.Using nonlinear Jaynes–Cummings model,one explores the possibility of being quantum data bus for nonlinear nanomechanical resonator,the nonlinearity destroys the dynamical quantum information-storage and maintains the revival of quantum coherence of charge qubit.With the calculation of decoherence factor,we demonstrate the influence of the nonlinearity of nanomechanical resonator on engineered decoherence of charge qubit.  相似文献   

16.
We propose a new scheme for realizing deterministic quantum state transfer (QST) between two spatially separated single molecule magnets (SMMs) with the framework of cavity quantum eleetrodynamics (QED). In the present scheme, two SMMs are trapped in two spatially separated optical cavities coupled by an optical fiber. Through strictly numerically simulating, we demonstrate that our scheme is robust with respect to the SMMs' spontaneous decay and fiber loss under the conditions of dispersive SMMs-field interaction and strong coupling of cavity fiber. In addition, we also discuss the influence of photon leakage out of cavities and show that our proposal is good enough to demonstrate the generation of QST with high fidelity utilizing the current experimental technology. The present investigation provides research opportunities for realizing QST between solid-state qubits and may result in a substantial impact on the progress of solid-state-based quantum communications network.  相似文献   

17.
We present a scheme for teleporting multi-qutrit quantum information from a sender to a receiver via the control of many agents in a network. Agents's control parameters are obtained via quantum entanglement swapping. In our scheme, Zhang and Man's QSS protocol [Phys. Rev. A 72 (2005) 022303] based on Bell-state entanglement swapping is generalized to a qutrit case. Our scheme owns the advantage of having higher code capacity and better security than the work [Commun. Theor. Phys. 44 (2005) 847] on controlled teleportation for multi-qubit.  相似文献   

18.
We investigate the approximate solution of the Dirac equation for a combination of Mobius square and Mie type potentials under the pseudospin symmetry limit by using supersymmetry quantum mechanics. We obtain the bound-state energy equation and the corresponding spinor wave functions in an approximate analytical manner. We comment on the system via various useful figures and tables.  相似文献   

19.
We present a scheme for remotely preparing a state via the controls of many agents in a network. In the scheme, the agents' controls are achieved by utilizing quantum key distribution. Generally, the original state can be restored by the receiver with probability 1/2 if all the agents collaborate. However, for certain type of original states the restoration probability is unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号