首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
孟宗  付立元  宋明厚 《物理学报》2013,62(5):54501-054501
针对一类具有非线性刚度、非线性阻尼的非线性相对转动系统, 应用耗散系统的拉格朗日原理建立在组合谐波激励作用下非线性相对转动系统的动力学方程. 构造李雅普诺夫函数, 分析相对转动系统的稳定性, 研究自治系统的分岔特性. 应用多尺度法求解相对转动系统的非自治系统在组合激励作用下的分岔响应方程. 最后采用数值仿真方法, 通过分岔图、时域波形、相平面图、Poincaré截面图等研究外扰激励、系统阻尼、 非线性刚度对相对转动系统经历倍周期分岔进入混沌运动的影响. 关键词: 相对转动 组合激励 分岔 混沌  相似文献   

2.
张文明  李雪*  刘爽  李雅倩  王博华 《物理学报》2013,62(9):94502-094502
建立一类含非线性粘滑摩擦力的两质量非线性相对转动系统的动力学方程. 研究此非线性相对转动系统在外激励作用下的混沌运动及多时滞反馈控制. 当系统在外激励作用下处于混沌状态时, 考虑引入多时滞反馈对系统的混沌运动进行控制. 应用Melnikov理论给出系统在Smale意义下的混沌临界条件, 研究了多时滞反馈对系统运动及混沌临界值的影响规律. 并结合系统相图、Poincare截面图和功率谱分析多时滞反馈参数对系统混沌运动的控制作用. 关键词: 多时滞 相对转动 控制 数值仿真  相似文献   

3.
More and more attentions are attracted to the analysis and design of nonlinear vibration control/isolation systems for better isolation performance. In this study, an isolation platform with n-layer scissor-like truss structure is investigated to explore novel design of passive/semi-active/active vibration control/isolation systems and to exploit potential nonlinear benefits in vibration suppression. Due to the special scissor-like structure, the dynamic response of the platform has inherent nonlinearities both in equivalent damping and stiffness characteristics (although only linear components are applied), and demonstrates good loading capacity and excellent equilibrium stability. With the mathematical modeling and analysis of the equivalent stiffness and damping of the system, it is shown that: (a) the structural nonlinearity in the system is very helpful in vibration isolation, (b) both equivalent stiffness and damping characteristics are nonlinear and could be designed/adjusted to a desired nonlinearity by tuning structural parameters, and (c) superior vibration isolation performances (e.g., quasi-zero stiffness characteristics etc.) can be achieved with different structural parameters. This scissor-like truss structure can potentially be employed in different engineering practices for much better vibration isolation or control.  相似文献   

4.
This study developed a time-domain finite element method to simulate the derailment of trains moving on embankments under seismic loading. The finite element mesh included trains, rails, embankment foundation, soil, and the absorbing boundary condition, where the seismic displacements were applied at the bottom of the mesh. For the cases of a perfectly smooth rail with or without seismic loading, the train derailment coefficients are almost independent of train speeds. However, with minor rail irregularities, they are highly dependent on train speeds. This study also shows that the resonance between the train and earthquake plays an important role in train derailment. The maximum derailment coefficients are quite linear in proportion to the peak ground acceleration (PGA) of the earthquake, if the structural behaviors and dynamic soil properties are not nonlinear.  相似文献   

5.
The formulation of three-dimensional dynamic behavior of a Beam On Elastic Foundation (BOEF) under moving loads and a moving mass is considered. The weight of the vehicle is modeled as a moving point load, however the effect of the lateral excitation is considered by modeling: (case 1) a lateral moving load with random intensity for wind excitation and (case 2) a moving mass just in lateral direction of the beam for earthquake excitation. A Dirac-delta function is used to describe the position of the moving load and the moving mass along the beam. The beam foundations are considered as elastic Winkler-type in two perpendicular transverse directions. This model is proposed to investigate the bending response of the rails under the effect of traveling vehicle weight while a random excitation such as earthquake or wind takes place. The results showed the importance of considering the effect of earthquake/wind actions as in bending stress of the beam on elastic foundations. The effect of different regions (different support stiffness) and different velocities of the vehicle on the response of the beam are investigated in mentioned directions. At the end, a linear optimal control algorithm with displacement–velocity feedback is proposed as a solution to suppress the response of BOEFs. By the method of modal analyses and taking into account enough number of vibration modes, state-space equation is obtained, then sufficient number of actuators was chosen for each direction. Stochastic analyses were performed in lateral direction in order to illustrate a comprehensive view for the response of the beam under the random moving load in both controlled and uncontrolled systems. Furthermore, the efficiency of control algorithm on critical velocities is verified by parametric analyses in the vertical direction with the constant moving load for different regions.  相似文献   

6.
When subjected to events such as earthquakes, engineering structures typically exhibit a nonlinear and hysteretic behaviour with stiffness and strength degradations. Though a reliable evaluation of safety conditions should take into account the nonlinear dynamic and evolutionary nature of the structural response, the experimental identification of a nonlinear behaviour under dynamic and seismic loading is, to date, an open problem. The present research aims at evaluating the potential of different restoring force models for simulating the seismic response of hysteretic structural systems, with special emphasis on the two main problems encountered when applying this approach to full-scale structures under intense excitation: (a) a markedly time-dependent behaviour; (b) need to compare among different restoring force models, either expressed in a parametric or polynomial form. In particular, polynomial models will be formulated both in terms of restoring force and its derivative, in order to present a comprehensive discussion of different strategies. The nonlinear identification technique employed in this paper is required to account for a time-dependent behaviour. In fact, in presence of degradation or any other time-varying characteristics, instantaneous identification certainly constitutes an enhancement of the classical restoring force based approach, and may as well provide checks on the consistency of the assumed models.  相似文献   

7.
Direct measurement of forces is not practical in many real-life applications since the interfacial conditions may change. Thus indirect force estimation methods must be developed though they pose special difficulty for nonlinear mounts or isolators. The hydraulic engine mount is examined as an illustrative example in this article since it exhibits spectrally varying and amplitude-sensitive parameters. First, we propose linear time-invariant, nonlinear and quasi-linear fluid and mechanical system models. Second, models are utilized to predict the transmitted force time history under sinusoidal excitation conditions given measured (or calculated) motion and/or internal pressure time histories. Experimental data from the non-resonant dynamic stiffness test is investigated in both time and frequency domains. In particular, the super-harmonic contents in fluid chamber pressure and force time histories are investigated using both measurements and mathematical models. This paper examines several alternate indirect schemes for estimating dynamic forces and highlights their strengths. The quasi-linear model with effective system parameters, say in terms of force to pressure or force to motion transfer functions, is found to correlate well with measured dynamic forces though linear and nonlinear models could be employed as well.  相似文献   

8.
In this work we show that it is possible to successfully apply the concept of nonlinear targeted energy transfer (TET) to seismic protection of structures; moreover, this passive strategy of seismic vibration control is found to be feasible and robust. We consider a three-story shear-frame structure, modeled as a three-degree-of-freedom system, subjected to four historic earthquakes as seismic excitation. Seismic mitigation is achieved by applying single or multiple nonlinear energy sinks (NESs) to the test structure. We study the performance and efficiency of the NESs through a set of evaluation criteria. First we consider a single vibro-impact NES (VI NES) applied to the top floor of the structure. In order to assess the robustness of the VI NES, the NES parameters are optimized for a specific seismic excitation (Kobe), and then tested against the three other earthquake records to demonstrate effectiveness of the NES for these cases as well. To further improve the effectiveness of the seismic mitigation, we then consider a system of two NESs—an NES with smooth nonlinearity at the top floor of the test structure and a VI NES at the bottom floor. We show that it is indeed possible to drastically reduce the structural seismic response (e.g., displacements, drifts, and accelerations) using this configuration.  相似文献   

9.
This paper discusses the dynamic behaviour of a nonlinear two degree-of-freedom system consisting of a harmonically excited linear oscillator weakly connected to a nonlinear attachment having linear and cubic restoring forces. The effects of the system parameters on the shape of the frequency-response curve are investigated, in particular those yielding the appearance and disappearance of outer and inner detached resonance curves. In contrast to the case when the linear stiffness of the attachment is zero, it is found that multivaluedness occurs at low frequencies as the resonant peak bends to the right. It is also found that as the coefficient of the linear term increases, the range of parameters yielding detached curves reduces. Compared to the case when the attached system has no linear stiffness term, this range of parameters corresponds to smaller values of the damping and nonlinear coefficients. Approximate analytical expressions for the jump-up and jump-down frequencies of the system under investigation are also derived.  相似文献   

10.
张海龙  王恩荣  闵富红  张宁 《中国物理 B》2016,25(3):30503-030503
The magneto-rheological damper(MRD) is a promising device used in vehicle semi-active suspension systems, for its continuous adjustable damping output. However, the innate nonlinear hysteresis characteristic of MRD may cause the nonlinear behaviors. In this work, a two-degree-of-freedom(2-DOF) MR suspension system was established first, by employing the modified Bouc–Wen force–velocity(F –v) hysteretic model. The nonlinear dynamic response of the system was investigated under the external excitation of single-frequency harmonic and bandwidth-limited stochastic road surface.The largest Lyapunov exponent(LLE) was used to detect the chaotic area of the frequency and amplitude of harmonic excitation, and the bifurcation diagrams, time histories, phase portraits, and power spectrum density(PSD) diagrams were used to reveal the dynamic evolution process in detail. Moreover, the LLE and Kolmogorov entropy(K entropy) were used to identify whether the system response was random or chaotic under stochastic road surface. The results demonstrated that the complex dynamical behaviors occur under different external excitation conditions. The oscillating mechanism of alternating periodic oscillations, quasi-periodic oscillations, and chaotic oscillations was observed in detail. The chaotic regions revealed that chaotic motions may appear in conditions of mid-low frequency and large amplitude, as well as small amplitude and all frequency. The obtained parameter regions where the chaotic motions may appear are useful for design of structural parameters of the vibration isolation, and the optimization of control strategy for MR suspension system.  相似文献   

11.
There are many systems which consist of a nonlinear oscillator attached to a linear system, examples of which are nonlinear vibration absorbers, or nonlinear systems under test using shakers excited harmonically with a constant force. This paper presents a study of the dynamic behaviour of a specific two degree-of-freedom system representing such a system, in which the nonlinear system does not affect the vibration of the forced linear system. The nonlinearity of the attachment is derived from a geometric configuration consisting of a mass suspended on two springs which are adjusted to achieve a quasi-zero stiffness characteristic with pure cubic nonlinearity. The response of the system at the frequency of excitation is found analytically by applying the method of averaging. The effects of the system parameters on the frequency-amplitude response of the relative motion are examined. It is found that closed detached resonance curves lying outside or inside the continuous path of the main resonance curve can appear as a part of the overall amplitude-frequency response. Two typical situations for the creation of the detached resonance curve inside the main resonance curve, which are dependent on the damping in the nonlinear oscillator, are discussed.  相似文献   

12.
This paper deals with the problem of robust reliable energy-to-peak controller design for seismic-excited buildings with actuator faults and parameter uncertainties. It is assumed that uncertainties mainly exist in damping and stiffness of the buildings because they are difficult to be measured precisely. The objective of designing controllers is to guarantee the asymptotic stability of closed-loop systems and attenuate disturbance from earthquake excitation. Energy-to-peak performance is believed to be of great significance when conditions and requirements of active building vibration control are carefully considered. Based on energy-to-peak control theory and linear matrix inequality techniques, a new approach for reliable building vibration control with satisfactory energy-to-peak performance is presented. An n-degree-of-freedom linear building structure under earthquake excitation is analyzed and simulations are employed to validate the effectiveness of the proposed approach in reducing seismic-excited building vibration. Some comparisons are also made between energy-to-peak control systems and H control systems to further prove the importance of the method raised in this paper.  相似文献   

13.
This paper concerns the vibration isolation characteristics of a nonlinear isolator using Euler buckled beams as negative stiffness corrector. Both analytical and experimental studies are carried out. The Harmonic Balance Method (HBM) is used to determine the primary resonance response for the single degree of freedom (SDOF) nonlinear system composed by a loaded mass and the nonlinear isolator. The distuning of the loaded mass is taken into consideration, resulting in a Helmoholtz–Duffing equation. The performance of the nonlinear isolator is evaluated by the defined two kinds of transmissibility and compared with that of the linear isolator without the stiffness corrector. The study shows that the asymmetric SDOF nonlinear system can behave like a purely softening, a softening–hardening or a purely hardening system, depending on the magnitude of the excitation level. An experimental apparatus is set up to validate the analytical results. The transmissibility results of the SDOF nonlinear system under base excitation with both discrete sinusoidal frequencies and slowly forward and backward sweeps are given and discussed. The complex jump phenomena under different excitation levels are identified. By introducing the stiffness corrector, the starting frequency of isolation of the nonlinear isolator is found to be lower than that of the linear one with the same support capacity. The proposed nonlinear isolator performs well in applications where the excitation amplitude is not too large.  相似文献   

14.
15.
A study of the targeted energy transfer (TET) phenomenon between an acoustic resonator and a thin viscoelastic membrane has recently been presented in the paper [R. Bellet et al., Experimental study of targeted energy transfer from an acoustic system to a nonlinear membrane absorber, Journal of Sound and Vibration 329 (2010) 2768-2791], providing a new path to passive sound control in the low frequency domain where no efficient dissipative device exists. This paper presents experimental results showing that a loudspeaker used as a suspended piston working outside its range of linearity can also be used as a nonlinear acoustic absorber. The main advantage of this technology of absorber is the perspective to adjust independently the device parameters (mass, nonlinear stiffness and damping) according to the operational conditions. To achieve this purpose, quasi-static and dynamic tests have been performed on three types of commercial devices (one with structural modi?cations), in order to de?ne the constructive characteristics that it should present. An experimental setup has been developed using a one-dimensional acoustic linear system coupled through a box (acting as a weak spring) to a loudspeaker used as a suspended piston acting as an essentially nonlinear oscillator. The tests carried out on the whole vibro-acoustic system have showed the occurrence of the acoustic TET from the acoustic media to the suspended piston and demonstrated the efficiency of this new kind of absorber at low frequencies over a wide frequency range. Moreover, the experimental analyses conducted with different NES masses have con?rmed that it is possible to optimize the noise absorption with respect to the excitation level of the acoustic resonator.  相似文献   

16.
Uncertainty analysis near bifurcation of an aeroelastic system   总被引:1,自引:0,他引:1  
Variations in structural and aerodynamic nonlinearities on the dynamic behavior of an aeroelastic system are investigated. The aeroelastic system consists of a rigid airfoil that is supported by nonlinear springs in the pitch and plunge directions and subjected to nonlinear aerodynamic loads. We follow two approaches to determine the effects of variations in the linear and nonlinear plunge and pitch stiffness coefficients of this aeroelastic system on its stability near the bifurcation. The first approach is based on implementation of intrusive polynomial chaos expansion (PCE) on the governing equations, yielding a set of nonlinear coupled ordinary differential equations that are numerically solved. The results show that this approach is capable of determining sensitivity of the flutter speed to variations in the linear pitch stiffness coefficient. On the other hand, it fails to predict changes in the type of the instability associated with randomness in the cubic stiffness coefficient. In the second approach, the normal form is used to investigate the flutter (Hopf bifurcation) boundary that occurs as the freestream velocity is increased and to analytically predict the amplitude and frequency of the ensuing LCO. The results show that this mathematical approach provides detailed aspects of the effects of the different system nonlinearities on its dynamic behavior. Furthermore, this approach could be effectively used to perform sensitivity analysis of the system's response to variations in its parameters.  相似文献   

17.
A vibration isolator consisting of a vertical linear spring and two nonlinear pre-stressed oblique springs is considered in this paper. The system has both geometrical and physical nonlinearity. Firstly, a static analysis is carried out. The softening parameter leading to quasi-zero dynamic stiffness at the equilibrium position is obtained as a function of the initial geometry, pre-stress and the stiffness of the springs. The optimal combination of the system parameters is found that maximises the displacement from the equilibrium position when the prescribed stiffness is equal to that of the vertical spring alone. It also satisfies the condition that the dynamic stiffness only changes slightly in the neighbourhood of the static equilibrium position. For these values, a dynamical analysis of the isolator under asymmetric excitation is performed to quantify the undesirable effects of the nonlinearities. It includes considering the possibilities of the appearance of period-doubling bifurcation and its development into chaotic motion. For this purpose, approximate analytical methods and numerical simulations accompanied with qualitative methods including phase plane plots, Poincaré maps and Lyapunov exponents are used. Finally, the frequency at which the first period-doubling bifurcation appears is found and the effect of damping on this frequency determined.  相似文献   

18.
Vibration isolation devices are required to reduce the forcing into the supporting structure or to protect sensitive equipment from base excitation. A suspension system with a low natural frequency is required to improve isolation, but with linear supports the minimum stiffness is bounded by the static stiffness required to support the equipment. However, nonlinear high-static-low-dynamic-stiffness (HSLDS) mounts may be designed, for example by combining elastic springs in particular geometries, to give the required nonlinear force-displacement characteristics. Current approaches to realise the required nonlinear characteristics are often inconvenient. Furthermore, the weight of the supported equipment, the environment, or the structural stiffness may change. This paper investigates the design of HSLDS isolation mounts using beams of tunable geometric nonlinear stiffness. In order to obtain the nonlinear response required, we first study the case of generic beams subject to static loads that are able to tune their nonlinear force-displacement characteristics to ensure that the isolators have very low dynamic stiffness. Tuning is achieved by actuators at the ends of the beams that prescribe the axial displacement and rotation. Secondly, we study a composite beam with an initial thermal pre-stress, resulting in internal stresses that give the required nonlinear response.  相似文献   

19.
Stochastic response of bridges seismically isolated by lead-rubber bearings (LRB) is investigated. The earthquake excitation is modeled as a non-stationary random process (i.e. uniformly modulated broad-band excitation). The stochastic response of isolated bridge is obtained using the time-dependent equivalent linearization technique as the force-deformation behavior of the LRB is highly nonlinear. The non-stationary response of isolated bridge is compared with the corresponding stationary response in order to study the effects of non-stationary characteristics of the earthquake input motion. For a given isolated bridge system and excitation, it was observed that there exists an optimum value of the yield strength of LRB for which the root mean square (rms) absolute acceleration of bridge deck attains the minimum value. The optimum yield strength of LRB is investigated under important parametric variations such as isolation period and damping ratio of the LRB and the frequency content and intensity of earthquake excitation. It is shown that the above parameters have significant effects on the optimum yield strength of LRB. Finally, closed-form expressions for the optimum yield strength of LRB and corresponding response of the isolated bridge system are proposed. These expressions were derived based on the model of bridge with rigid deck and pier condition subjected to stationary white-noise excitation. It was observed that there is a very good comparison between the proposed closed-form expressions and actual optimum parameters and response of the isolated bridge system. These expressions can be used for initial optimal design of seismic isolation system for the bridges.  相似文献   

20.
介绍了中国聚变工程实验堆(CFETR)极向场线圈馈线系统终端盒(CTB)设计,CTB由外盒体、80K内冷屏、电流引线及超导母线、内部管路系统、阀门系统等子部件组成.利用ANSYS有限元软件,在运行工况和地震工况下对CTB外盒体及内冷屏进行结构强度校核、结构热分析和地震响应分析,得到CTB外盒体的位移、应力分布云图和在地...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号