首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stability against oxidation was investigated for vaporized self-assembled multilayers on nano-sized Cu powders. 100 nm-sized copper powders were coated with 1-octanethiol to make a passivation layer against oxidation.As a result, the surface resistivity of the coated and uncoated nano-sized copper powders differed by two orders of magnitude. XPS analysis was used to monitor changes in the amount of sulfur and oxygen on the surface of octanethiol-coated Cu nano powders over a period of time. While sulfur was detected for up to 75 days, the amount of oxygen increased dramatically after 35 days, indicating sign of partial oxidation. Furthermore, HR-TEM images showed that the octanethiol film was consistently 10 nm thick, for up to 35 days. After 35 days exposure to the air, the octanethiol film was partially damaged and its diffraction pattern detected the presence of Cu2O. Based on these findings, vaporized octanethiol coating protected the copper nano powders from oxidation for up to 35 days. Therefore this oxidation inhibition property of VSAMs coating method on Cu powders achieves a great milestone toward inkjet printing technology.  相似文献   

2.
A modified potentiostatic method, termed the ‘pulse pontentiostatic method’ (PPSM) was used to get nano fibrillar poly(diphenylamine) (PDPA) film on Indium tin oxide (ITO) coated glass electrode and also for making modified electrode with platinum particles dispersed in PDPA. Platinum clusters were electrodispersed under constant potential on PDPA films to obtain catalytic electrodes for methanol oxidation. Energy dispersive analysis of X-rays (EDAX) results showed that the Pt microparticles are deposited into PDPA film. Scanning electron micrograph, SEM images show that the deposition results spherical catalytic particles. X-ray photoelectron spectroscopy (XPS) results inform that the net electronic charge on carbon atom and also the imine/amine ratio was not affected by Pt loadings. The modification of electrode surface by nano fibular PDPA improves the electrocatalytic activity for methanol oxidation.  相似文献   

3.
The formation of zinc phosphate (ZPO) coatings on 2024-T3 aluminum alloy was studied using scanning electron microscopy (SEM), scanning Auger microscopy (SAM) and X-ray photoelectron spectroscopy (XPS), with an emphasis on microstructural effects involving second-phase particles and the alloy matrix. Surface polishing results in an Al-Cu-Mg particle surface that contains metallic Cu as well as an overlayer of aluminum and magnesium oxide, while larger amounts of aluminum oxide are present on the Al-Cu-Fe-Mn particle and matrix. When dipped in an acidic ZPO coating solution, the oxide covering the Al-Cu-Mg particle is etched most easily, and metallic Cu near the surface makes that region most cathodic, allowing more coating deposition compared with the other regions. The oxides on the Al-Cu-Fe-Mn and matrix regions are similar, thereby confirming that the observed differences in ZPO coating characteristics at these two regions arise from their underlying electrochemical characteristics. Immersion of a coated 2024-Al sample in corrosive NaCl solution for extended periods indicates that the ZPO provides better protection to the second-phase particles than to the matrix.  相似文献   

4.
In this report, Cu nano particles have been prepared by direct electrochemical reduction from CuO nano particles and the reduction mechanism was investigated. To investigate the reduction mechanism, CuO has been deposited on the AISI 430 by magnetron sputtering in various Ar/O2 ratio and the cyclic voltammetry (CV) was performed in 0.5 M NaCl solution at 300 K. This result indicated that the oxygen from the CuO was ionized at −0.874 V (versus SCE) and reduced to Cu. To fabricate Cu nano particles, we employed CuO nano particles, which were prepared by a conventional mechanical milling, with a dc rectifier and the specific electrochemical cell. The structure of the films and nano particles were analyzed by XRD, SEM/EDS and XPS.  相似文献   

5.
In this paper, carbon fibers with improved thermal stability and oxidation resistive properties were prepared and evaluated their physical performances under oxidation condition. Carbon fibers were coated with SiC particles dispersed in a polyacrylonitrile solution and then followed by pyrolyzed at 1400 °C to obtain the SiC nanoparticle deposition on the surface of the carbon fiber. The SiC coated carbon fiber showed extended oxidation resistive property as remaining 80-88% of the original weight even at high temperature 1000 °C under air, as compared with the control of zero weight at 600 °C. The effects of the coating conditions on the oxidation resistive properties of the coated fibers were studied in detail.  相似文献   

6.
KrF excimer laser-assisted dry and steam cleaning of single-crystal silicon wafers contaminated with three different types of metallic particles was studied. The laser fluence used was 0.3 J/cm2. In the dry process, for samples cleaned with 100 laser pulses the cleaning efficiency was 91, 71 and 59% for Au, Cu and W particles, respectively, whilst in steam cleaning the efficiency is about 100% after 5 laser pulses, independently of the type of contaminant. The effects of laser irradiation on the Si surface are investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Laser processing at 0.3 J/cm2 does not deteriorate the Si-wafer surface, either in dry or steam cleaning. However, the measured XPS intensity coming from the metallic component is greater on the cleaned surfaces than in the initial condition. Quantification of the XPS results, assuming a stratified overlayer model for the detected species and accounting for the presence of the metallic particles on the surface, showed that the obtained results can be explained by the formation of a fractional metallic monolayer on the cleaned surfaces, due to partial vaporisation of small particles initially present on the sample surface. This contamination of the substrate could be considered excessive for some applications and it shows that the process requires careful optimisation for the required efficiency to be achieved without degradation of the substrate. Received: 14 January 2001 / Accepted: 19 February 2001 / Published online: 20 June 2001  相似文献   

7.
Calcia-doped ceria is of potential interest as an ultraviolet (UV) radiation blocking material in personal care products because of the excellent UV light absorption property and low catalytic ability for the oxidation of organic materials superior to undoped ceria. In order to reduce the oxidation catalytic activity further, calcia-doped ceria was coated with amorphous silica by means of seeded polymerization technique. Generally, nanoparticles of inorganic materials do not provide a good coverage for human skin because of the agglomeration of the particles. The platy particles are required to enhance the covering ability of inorganic materials. This can be accomplished by synthesis of calcia-doped ceria/mica nanocomposite with subsequent silica coating to control catalytic activity of calcia-doped ceria. Calcia-doped ceria/mica nanocomposite was prepared by soft solution chemical method followed by silica coating via seeded polymerization technique. Silica coated calcia-doped ceria/mica nanocomposite was characterized by X-ray diffraction, SEM, TEM, XPS and FT-IR.  相似文献   

8.
直接置换法制备包覆型纳米铜-银双金属粉末   总被引:5,自引:0,他引:5       下载免费PDF全文
 以AgNO3为主盐,采用直接置换法初步制备了包覆型纳米铜-银双金属粉末,分析了工艺条件对包覆效果的影响,并用透射电子显微镜、X射线能量色散谱仪和X射线衍射仪进行了表征。实验结果表明:纳米铜-银双金属粉末为包覆型结构,平均粒径约70 nm,分散性较好,表面银的原子分数达到74.28%。在洗涤过程中加入一定量的保护剂,有效解决了纳米铜粉的氧化问题。  相似文献   

9.
Nanomaterials are a topic of increased interest, since they have properties which differ from their macroscopic counterparts. Many applications nowadays take advantage of the new functionalities which natural and manufactured nanoparticles possess. Based on these developments, also the research on energetic nanomaterials is receiving more and more attention. Apart from the synthesis of energetic nanomaterials, another area of interest is the coating of energetic (nano)powders, in order to be able to modify their properties or to add new functionalities to these particles. (Modified) energetic materials find applications in explosives, gun and rocket propellants and pyrotechnic devices. The modified energetic materials are expected to yield enhanced properties, e.g. a lower vulnerability towards shock initiation, enhanced blast, enhanced shelf-life and environmentally friendly replacements of currently used materials.An experimental set-up for the coating of existing powders has been designed and constructed. The experimental technique is based on a special plasma application which, contrary to more general plasmas, can be operated at relatively low temperatures and ambient pressure. This allows the handling of heat-sensitive materials, which would otherwise readily decompose or react at higher temperatures. The facility used for the coating of energetic powders in the lower micron range is based on a fluidized bed reactor in which the powder circulates.In this paper, the experimental technique will be described and experimental results will be shown of CuO powders that have been coated with a very thin, nanoscale deposit of a SiO-containing layer.  相似文献   

10.
This study fabricated the large area and optically transparent superhydrophobic silica based films on glass surface with optimized hardness. A silane coupling agent, tetraethoxysilane (TEOS), effectively bonds silica particles onto the glass substrate. Desired surface roughness was obtained by adjusting nano silica particles concentration of the precursors prepared by the sol-gel process. Silica suspension was coated onto the glass substrate by the air brushing methods. This method can deposit a uniform, transparent coating on the glass substrate efficiently. Diluting the precursor by adding ethanol or a mixture of D.I. water and ethanol further improved the transmittance and superhydrophobicity efficiency. The results showed that as the silica particle concentration and the thickness of the coating were increased, the surface roughness was enhanced. Rougher surface displayed a higher superhydrophobicity and lower transmittance. Therefore, the concentration of silica particle, volume of coatings, and the ratio of ethanol and D.I. water are of great importance to deposit a transparent, superhydrophobic coating on glass.  相似文献   

11.
《Composite Interfaces》2013,20(8-9):739-756
Black oxide is a conversion coating applied onto the Cu substrate to improve the interfacial adhesion with polymeric adhesives. A comprehensive study was made to characterize the black oxide coating and the corresponding interfacial adhesion with various types of polymeric resin, aiming to optimize the oxide processing conditions. The reliability of adhesion performance of the coating was evaluated before and after accelerated hygrothermal ageing, such as temperature cycling, pressure cooker test, and moisture sensitivity test followed by thermal shock. The moisture resistance of the substrate with black oxide coating was much higher than the bare Cu substrate, during both the moisture absorption and desorption processes. Thermal cycling alone did not change significantly the adhesion performance of any of the substrates studied. Pressure cooker test was detrimental to adhesion performance of oxide coated Cu substrates. Nevertheless, the residual interfacial bond strengths were consistently much higher for the black oxide coated substrates than the bare Cu surface. Significant delamination occurred between the bare Cu and the moulding compound after the moisture sensitivity test followed by thermal shock, whereas there was virtually no delamination on the black oxide coated samples under the same ageing condition, confirming the higher reliability of interfacial adhesion performance for the latter.  相似文献   

12.
Cu powder was coated with polyethylene wax via the flux-capping method in hope to avoid the oxidation of it, so the increment of the infrared emissivity of the coating can be greatly reduced. The prepared product was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The infrared emissivity of the prepared material was measured by Infrared Emissometer. The influence parameters that will affect the emissivity of the coating were systematically investigated, such as the content of coated Cu powder, coating fineness, coating thickness and aging process. The results indicated that the infrared emissivity value of the coating was reduced after Cu powder was coated with polyethylene wax. The polyethylene wax/Cu composites presented a homogenous sheet structure when the content of Cu powder increased to 30 wt.%, and it has a lower emissivity. The infrared emissivity of the coating increases rapidly as thickness increases and becomes steady above thickness of 70 μm. The composite coating exhibits lower emissivity value and excellent physical properties at coated Cu content of 20 wt.%. The emissivity of the coating that was prepared from the modification of the Cu powder was decreased with the decrement of the grinding fineness and increased with the aging time. The emissivity of the coating that was prepared from the modification of the Cu powder is always lower than that of the coating that only composed of the Cu powder with the increment of the aging time. Therefore, it can be concluded that the anti-oxidation of Cu powder is greatly improved after it was modified by polyethylene wax, which results in a novel coating with long-run low emissivity.  相似文献   

13.
吴川  吴锋  白莹 《光散射学报》2005,17(4):396-401
本文采用溶液化学的方法,在锂离子电池正极材料LiMn2O4上包覆一层金属氢氧化物前驱体,再通过热处理得到稳定的金属氧化物包覆层。傅立叶红外光谱(FIIR)的研究表明,当包覆LiMn2O4中外来金属原子的实际百分比小于1.11%时,不能探测到包覆层红外信号。X射线光电子能谱(XPS)的研究表明,表面包覆层中Al或Mg的存在不仅削弱Mn-O键的作用,而且给体系引入过多的正电荷,导致Mn(2p)结合能的降低。包覆层中的Al2O3和MgO均在加热过程中向LiMn2O4体相中扩散;而包覆层中的SnO2在焙烧后并未进入LiMn2O4晶格内,而是附着于其表面。  相似文献   

14.
The thermal and native oxidation of CuGaSe2 thin films was studied by in situ X-ray photoelectron spectroscopy (XPS). The special design of the XPS chamber allowed to measure XP-spectra under oxidizing gas atmospheres at pressures of up to 5 mbar (in situ) or in ultra high vacuum (UHV). During thermal oxidation, the formation of predominantly Ga2O3 and some amount of SeO2 were observed, but no copper oxides could be detected in the near surface region of the thin films. The same oxides were found after native oxidation in air under ambient conditions. Only after long term native oxidation for longer than 4 months Cu(OH)2 was detected. An additional sodium oxide compound formed at the thin film surface, NaxO and Na2CO3 after thermal and native oxidation, respectively. The amount of these sodium oxide compounds depends on the Na content on the as prepared surface. The formation of SeO2 under humid conditions at 100 °C was found to depend on the surface composition of the thin film.  相似文献   

15.
This article presents a process for surface coating and functionalization of luminescent silicon nanoparticles. The particles were coated with silica using a microemulsion process that was adapted to the fragile silicon nanoparticles. The as-produced core–shell particles have a mean diameter of 35 nm and exhibit the intrinsic photoluminescence of the silicon core. The silica layer protects the core from aqueous oxidation for several days, thus allowing the use of the nanoparticles for biological applications. The nanoparticles were further coated with amines and functionalized with polyethylene glycol chains and the toxicity of the particles has been evaluated at the different stages of the process. The core–shell nanoparticles exhibit no acute toxicity towards lung cells, which is promising for further development.  相似文献   

16.
Zn/ZnO纳米颗粒的表面声子Raman散射许建峰黄亚彬莫育俊(河南大学物理系开封475001)RamanScateringfromSurfacePhononsinZn/ZnONanoparticlesXuJianfeng,HuangYabin,Mo...  相似文献   

17.
Comparative studies on the intermetallic compound (IMC) formations of small (aggregated) and large Sn (irregular) with Ni and Cu in cold gas dynamic sprayed coatings were carried out. The Sn with high purity were selected and prepared as raw materials mixture in order to be sprayed onto Ni and Cu plate-shape substrates. The small particles of Sn (<1 μm) were successfully coated under conventional coating parameters when they are mixed with larger powder materials. And microstructural observation regards to compound formation similarly worked out for both small and large Sn mixture. However, the intermetallic formation behavior was turned out to be different. After post-annealing, the larger Sn particles in the composite coating formed larger amount of IMC with Ni than small Sn although, owing to larger interfacial area, more intensive reactivities were expected. Also, there were significant differences in the size and distribution of eutectic pores as well.  相似文献   

18.
The critical velocity for particle deposition in cold spraying is a key parameter, which depends not only on the material type, but also the particle temperature and oxidation condition. The dependency of deposition efficiency of cold spray Cu particles on the particle temperature and surface oxidation was examined. The effect of particle surface oxide scales on the interfacial microstructure and adhesive strength of the cold-sprayed Cu coatings was investigated. The results show that the deposition efficiency significantly increases with increasing the gas temperature but decreases with augmenting the oxygen content of the starting powder. The oxide inclusions at the interfaces between the deposited particles inhibit the effective bonding of fresh metals and remarkably lower the bond strength of the deposited Cu coatings on steel.  相似文献   

19.
A mechano-thermal coating method was adopted for obtaining LiCoO2 coated particles with pre-formed pseudo-boehmite nanoparticulate, followed by calcination at 723 K for 10 h. From X-ray diffraction (XRD) analysis it was seen that the coated cathode materials did not show any extraneous phase peaks corresponding to the pseudo-boehmite and the crystal structure, α-NaFeO2, remained the same as pristine LiCoO2. Scanning electron micrograph (SEM) of the coated samples showed that above the 1.0 wt.% coating level, the excess pseudo-boehmite got glued to the coated cathode particles as spherules. TEM images showed that the Al2O3 particles derived from pseudo-boehmite formed ∼20 nm thickness coating layer on the LiCoO2 particles. The XPS/ESCA results revealed that the presence of two different O 1s corresponds to the surface coated Al2O3 and the core material. The electrochemical performance of the coated materials by a cycling study suggest that 1.0 wt.% coated Al2O3 derived from pseudo-boehmite on the two commercial LiCoO2 samples improved cycle stability by a factor of five and 11 times over the pristine LiCoO2 cathode material. Cyclic voltammetry revealed that the hexagonal-monoclinic-hexagonal phase transformations were retained for the coated cathode materials upon continuous cycling.  相似文献   

20.
Development of copper coatings on ceramic powder by electroless technique   总被引:1,自引:0,他引:1  
Electroless (EL) coating technique is one of the elegant ways of coating by controlling the temperature and pH of the coating bath in which there is no usage of electric current. EL nano-copper coating on ceramic particles of micron size is not reported. In this investigation, ceramic powders of ∼100 μm size have been coated with copper by EL technique in the pH and temperature ranges of 12-13.5 and 60-85 °C, respectively. The optimization of EL copper bath has been evaluated through the combination of process parameters like pH and temperature. The optimized value of pH is found to be 12.5 and temperature as 75 °C. The coated and uncoated powders have been subjected to microstructural studies by scanning electron microscope (SEM) and the phases present have been analyzed by X-ray diffraction. An attempt has been made to understand the bonding mechanism of coating. The adherence with the substrate is attributed to the chemical and mechanical bonding at the interface. A model has been suggested for the mechanical bonding effect at the interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号