首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Coatings formed on 2024-T3 aluminum alloy were studied by scanning electron microscopy (SEM) and scanning Auger microscopy (SAM) after dipping in zinc phosphating (ZPO) baths at different acidities, with or without the Ni2+ additive. The objective was to learn more about the ZPO coating mechanism on the different microstructural regions of 2024-T3. When the initial coating solution pH is 4 (optimal acidity), a slower etching rate at the Al-Cu-Fe-Mn intermetallic particle causes significant precipitation of ZnO, which differs from the coating on other regions of the surface where phosphate predominates. The larger crystals (∼μm dimension) on the matrix and the Al-Cu-Mg particle contain more phosphate compared to other areas on the surface. When Ni2+ is added to the coating solution, the Al-Cu-Mg particle is more thickly coated compared to when the Ni2+ is not present. The slower rate of precipitation when Ni2+ is present in the coating solution increases the exposure of the alloy substrate to the acidic environment, so allowing more dissolution of Mg and Al from the Al-Cu-Mg particle. This results in the particle becoming more cathodic in nature, and therefore more coating deposits at this location. Evidence from SAM supports the presence of NiAl2O4, hypothesized in Part I, forming at coating pores later in the process.  相似文献   

2.
On the growth of conversion chromate coatings on 2024-Al alloy   总被引:1,自引:0,他引:1  
The initial growth of chromate conversion coatings on aluminium 2024-T3 alloy has been investigated by scanning Auger microscopy, scanning electron microscopy and X-ray photoelectron spectroscopy. The coating initiation is shown to be influenced by the alloy microstructure. In agreement with previously proposed growth models, Cr(VI) to Cr(III) reduction begins on the Al-Cu-Fe-Mn intermetallic second-phase particles, which act as cathodic sites, and then over the entire Al matrix surface. The less noble Al-Cu-Mg second-phase particles demonstrate dual behaviour during the initial stage of coating; some dealloy, with formation of a Cu-rich sponge-like structure, while others show no evidence for etching during the first few seconds and coating deposits on them similar to the situation for the Al-Cu-Fe-Mn particles. XPS measurements show more Cr(III) at the very initial stage of nucleation and growth, whereas the amount of Cr(VI) in the coating increases with the length of the chromating treatment. This is discussed in relation to Raman spectroscopy measurements made in a separate study.  相似文献   

3.
The adsorption of bis-1,2-(triethoxysilyl)ethane (BTSE) and γ-glycidoxypropyltrimethoxysilane (γ-GPS) on mirror-polished 7075-T6 aluminum alloy was studied with an emphasis on the different microstructural regions of the alloy surface, specifically the alloy matrix and the two main types of second-phase particles, as well as how the adsorption was affected by a heating pre-treatment and by changes in the pH of the γ-GPS solution. Surface characterizations were undertaken with scanning Auger microscopy (SAM), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and time-of-flight secondary-ion mass spectrometry (TOF-SIMS). BTSE at its natural pH (4.3) adsorbed at all micro-regions of the air-oxidized surface, while γ-GPS at its natural pH (5.7) was largely ineffective. Adsorption of γ-GPS on all micro-regions was possible after adjusting the solution pH to a lower value (3.2), or by using the solution of natural pH after pre-treating the sample by heating at 200 °C for 15 min. TOF-SIMS measurements indicated that direct metal-O-Si covalent bonding occurred at each silane interface formed to the different micro-regions of the alloy surface, with Al-O-Si bonding being predominant in each case.  相似文献   

4.
Coatings formed on 2024-T3 aluminum alloy were studied by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) after dipping in zinc phosphating (ZPO) baths at different acidities, for different lengths of time, and with or without Ni2+ additive. The overall objective was to learn more about the role of Ni2+ on the ZPO coating mechanism, particularly since this additive is believed to improve corrosion protection for the Al alloy. Secondary phosphates dominate the coatings when the Ni-containing solution is adjusted to starting pH values of either 3 or 5, while tertiary phosphate is predominant at pH 4. AlF3 precipitates during the early stages of the coating process. Ni2+ has two main roles in the mechanism. First, the rate of increase in local solution pH is retarded by the slower kinetics of reactions involving Ni2+ compared to Zn2+, leading to thinner ZPO coatings when Ni2+ is present in the coating solution. Second, most Ni2+ deposition occurs during the later stages of the coating process, by nickel phosphate deposition and/or by formation of a Ni-rich oxide.  相似文献   

5.
Oxide formation on a clean AZ91-Mg alloy surface has been characterized by X-ray photoelectron spectroscopy (XPS), while the chemical composition of a mirror-polished sample was assessed by scanning Auger microscopy (SAM) and scanning electron microscopy (SEM) at different microstructural regions, referred to as the grain boundary, matrix and particle regions. XPS and SAM confirmed that Mg and Al are always present in the surface regions probed, whereas bulk characterization with energy dispersive X-ray (EDX) analysis was necessary to detect the additional alloying elements, Mn and Zn. Coating by 1% solutions of BTSE, γ-GPS and γ-APS at their natural pH values gave etching of the surface Mg oxide. Adsorption occurs on the different regions, but the attachment is weak, especially because of the fragile nature of the underlying substrate. However, increasing the concentration of BTSE to 4% formed a thicker and denser coating with better prospects for substrate protection.  相似文献   

6.
To improve the wear resistance of copper components, laser surface cladding (LSC) was applied to deposit (Ti,W)C reinforced Ni–30Cu alloy composite coating on copper using a cladding interlayer of Ni–30Cu alloy by Nd:YAG laser. The microstructure and phases of the composite coating were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray energy dispersive microanalysis (EDX). Microhardness tester and pin-on-disc wear tester were employed to evaluate the hardness and dry-sliding wear resistance. The results show that crack-free composite coating with metallurgical bonding to the copper substrate is obtained. Phases identified in the (Ti,W)C-reinforced Ni–30Cu alloy composite layer are composed of TiWC2 reinforcements and (Ni,Cu) solid solution. TiWC2 reinforcements are distributed uniformly in the (Ni,Cu) solid solution matrix with dendritic morphology in the upper region and with particles in the mid-lower region. The microhardness and wear properties of the composite coating are improved significantly in comparison to the as-received copper substrate due to the addition of 50 wt% (Ti,W)C multicarbides.  相似文献   

7.
The high strength:weight ratio of magnesium alloys makes them an ideal metal for automotive and aerospace applications where weight reduction is of significant concern. Unfortunately, magnesium alloys are highly susceptible to corrosion particularly in salt-spray conditions. This has limited their use in the automotive and aerospace industries, where exposure to harsh service conditions is unavoidable. The simplest way to avoid corrosion is to coat the magnesium-based substrate by a process such as electroless plating, which is a low-cost, non line of sight process.Magnesium is classified as a difficult to plate metal due to its high reactivity. This means that in the presence of air magnesium very quickly forms a passive oxide layer that must be removed prior to plating. Furthermore, high aluminium content alloys are especially difficult to plate due to the formation of intermetallic species at the grain boundaries, resulting in a non-uniform surface potential across the substrate and thereby further complicating the plating process.The objective of this study is to understand how the magnesium alloy microstructure influences the surface chemistry of the alloy during both pretreatment and immersion copper coating of the substrate.A combination of scanning electron microscopy, energy dispersive spectroscopy and scanning Auger microscopy has been used to study the surface chemistry at the various stages of the coating process. Our results indicate that the surface chemistry of the alloy is different on the aluminum rich β phase of the material compared to the magnesium matrix which leads to preferential deposition of the metal on the aluminum rich phase of the alloy.  相似文献   

8.
Zn-Ni-Al2O3 nanocomposite coating, which was fabricated by eletrodeposition technique with the aid of ultrasound, was investigated by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis and X-ray photoelectron spectroscopy (XPS). The results reveal that 7.2 wt.% nano-alumina particles uniformly dispersed in the matrix of the composite coating. The XPS analyses demonstrate that the outermost layer of Zn-Ni-Al2O3 coating was composed of nano-alumina and Zn(OH)2, while the transition layer between the outermost layer and the Zn-Ni matrix consisted of nano-alumina, metallic Zn, ZnO and metallic Ni. In order to investigate the influences of ultrasonic agitation and the incorporation of nano-alumina on the composition and surface structure of Zn-Ni matrix, the comparison studies of Zn-Ni-Al2O3 nanocomposite coating with Zn-Ni coatings fabricated with and without ultrasound were conducted. The results indicate that ultrasonic agitation resulted in a decrease of Ni content in the Zn-Ni matrix and an increase of the thickness of surface oxide layer; while the incorporation of nano-α-Al2O3 increased the Ni content in the Zn-Ni matrix.  相似文献   

9.
The present work reports a simple method to produce the aluminum superhydrophobic surface based on an interface reaction between an aluminum foil and zinc aqueous solution. The products were characterized by field-emission scanning electron microscopy, X-ray powder diffraction and X-ray photoelectron spectrum. The field-emission scanning electron microscopy images show that the coating surface is composed of micro/nanoscale binary structure, which is similar to the structure of lotus leaf. The wettability of the coating surface was also investigated. It was found that after treatment with stearic acid, the wettability of the aluminum foil changed from superhydrophilic to water-repellent superhydrophobic. The complex micro/nanoscale binary structures along with the low surface energy lead to the high surface superhydrophobicity.  相似文献   

10.
A catalyst on the basis of complex oxide with perovskite structure deposited on a cellular nickel has been studied by scanning and transmission electron microscopy. The presence of the porous structure of the catalytic coating and its nature and the particle size of the catalytic phase have been established. The morphology of the intermediate layers has been studied. Such intermediate layers appearing in the case in which a secondary carrier (aluminum oxide) is used have a promoting effect on the catalyst. The regularities of the formation of ensembles of particles of the perovskite phase depending on the conditions of synthesis by pyrolysis of polymer salt compositions, such as the nature of the organic component, the ratio between the oxidant and the reductant, thermal treatment temperature have been studied.  相似文献   

11.
LaserglazingstudyofCo-basedalloyandNi-Nb-Cralloycoating¥TIANNailiang(DepartmentofAppliedPhysics,TianjinInstituteofScienceandT...  相似文献   

12.
KrF excimer laser-assisted dry and steam cleaning of single-crystal silicon wafers contaminated with three different types of metallic particles was studied. The laser fluence used was 0.3 J/cm2. In the dry process, for samples cleaned with 100 laser pulses the cleaning efficiency was 91, 71 and 59% for Au, Cu and W particles, respectively, whilst in steam cleaning the efficiency is about 100% after 5 laser pulses, independently of the type of contaminant. The effects of laser irradiation on the Si surface are investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Laser processing at 0.3 J/cm2 does not deteriorate the Si-wafer surface, either in dry or steam cleaning. However, the measured XPS intensity coming from the metallic component is greater on the cleaned surfaces than in the initial condition. Quantification of the XPS results, assuming a stratified overlayer model for the detected species and accounting for the presence of the metallic particles on the surface, showed that the obtained results can be explained by the formation of a fractional metallic monolayer on the cleaned surfaces, due to partial vaporisation of small particles initially present on the sample surface. This contamination of the substrate could be considered excessive for some applications and it shows that the process requires careful optimisation for the required efficiency to be achieved without degradation of the substrate. Received: 14 January 2001 / Accepted: 19 February 2001 / Published online: 20 June 2001  相似文献   

13.
Ni-Co-fly ash coatings were deposited on zincate treated 5083 wrought aluminium alloy substrates with the aid of the electrodeposition technique. Structural and chemical characterization of the produced composite coatings was performed with the aid of X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron dispersive X-ray analysis (EDS) techniques. The Ni-Co-fly ash coatings were found to consist of a crystalline Ni-Co solid solution with dispersed fly ash particles. In addition, chemical analysis of the Ni-Co matrix showed that it consisted of 80 wt.% Ni and 20 wt.% Co. The co-deposition of fly ash particles leads to a significant increase of the microhardness of the coating. The corrosion behaviour of the Ni-Co-fly ash/zincate coated aluminium alloy, in a 0.3 M NaCl solution (pH = 3.5), was studied by means of potentiodynamic corrosion experiments.  相似文献   

14.
张小锋  葛昌纯  李玉杰  郭双全  刘维良 《物理学报》2012,61(2):20207-020207
采用冷动力喷涂法以纯钨和钨-镍-铁合金为原料在铜合金基体上制备了钨涂层和钨-镍-铁涂层. 研究了冷喷涂过程中钨粉粒径、喷涂距离等因素对涂层性能的影响. 用扫描电子显微镜分析了涂层的表面、断面微观结构, 并用原子力显微镜测量了涂层的粗糙度. 此外, 计算了冷喷涂过程中粉末颗粒的实际速度, 并采用有限元分析软件ANSYS/LS-DYNA模拟了冷喷涂过程中颗粒撞击基体时的变形情况.  相似文献   

15.
The anodic behavior, corrosion resistance and protective ability of Zn and alloyed Zn-Co (∼3 wt.%) nanocomposite coatings were investigated in a model corrosion medium of 5% NaCl solution. The metallic matrix of the layers incorporates core-shell nano-sized stabilized polymeric micelles (SPMs) obtained from poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) block co-polymers. The protective properties of the composite coatings were evaluated using potentiodynamic polarization technique, polarization resistance measurements and powder X-ray diffraction. The sizes and distribution of the stabilized polymeric micelles in the starting electrolytes used as well as in the metal matrices of the layers were investigated using scanning and transmission electron microscopy. The results obtained are compared to those of electrodeposited Zn and Zn-Co (∼3 wt.%) alloy coatings at identical conditions and demonstrate the enhanced protective characteristics of the Zn nanocomposites during the investigating period. The influence of the SPMs on the corrosion resistance of the nanocomposite layers is commented and discussed.  相似文献   

16.
The growth process, distribution of chemical elements, phase constitutions and relative wear resistance of the ceramic coatings formed on Al-Cu-Mg alloy by ac micro-arc oxidation are investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscope (EDX), X-ray diffraction (XRD) and reciprocating friction and wear tests. The results indicate that there are three stages with the formation of the ceramic coatings: (1) the formation of ceramic particles, (2) sintering growth in sawtooth structure, (3) the increase of thickness by remolting and sintering. The ceramic coatings are made up of a mixture of α-alumina, γ-alumina and amorphous alumina, whose relative contents varied with the position in the ceramic coatings, respectively. The chemical elements altered in ceramic coatings produced in different electrolytes and varied along the depth in ceramic coatings obtained in phosphate electrolyte. Meanwhile, the results of friction and wear tests against Gr15 after 16 h indicate that the weight loss of ceramic coatings became almost unchanged.  相似文献   

17.
This paper explores the possibility of making hydrophobic and superhydrophobic surfaces from electroless displacement of Cu by Ag+, in the case where Cu oxidation is limited owing to Cu layers of nanometric thicknesses. The morphology of the Ag layers is studied by scanning electron microscopy for Cu thicknesses between 10 and 80 nm. The mapping of the elemental content of the layers by electron dispersive X-ray analysis also has been used to clarify the particle growing by diffusion limited aggregation. It is shown that the average size and the shape complexity of the Ag particles increase with the Cu thickness. The addition of dimethyl sulfoxide in the Ag+ aqueous solution improves the surface homogeneity, increases the particle density and decreases their sizes. The wetting behaviour of the surfaces, after grafting with octadecanethiol, has been studied from measurements of the contact angles of a drop of water. According to the thickness of the initial Cu layer and the morphology of the Ag layer, contact angles range between 110° and 154°. Superhydrophobic surfaces are obtained from 80 nm thick Cu layers.  相似文献   

18.
Soft ferromagnetic ternary Ni-Co-P films were deposited onto Al 6061 alloy from low temperature Ni-Co-P electroless plating bath. The effect of deposition parameters, such as time and pH, on the plating rate of the deposit were examined. The results showed that the plating rate is a function of pH bath and the highest coating thickness can be obtained at pH value from 8 to10. The surface morphology, phase structure and the magnetic properties of the prepared films have been investigated using scanning electron microscopy (SEM), X-ray diffraction analysis (XRD) and vibrating magnetometer device (VMD), respectively. The deposit obtained at optimum conditions showed compact and smooth with nodular grains structure and exhibited high magnetic moments and low coercivety. Potentiodynamic polarization corrosion tests were used to study the general corrosion behavior of Al alloys, Ni-P and Ni-Co-P coatings in 3.5% NaCl solution. It was found that Ni-Co-P coated alloy demonstrated higher corrosion resistance than Ni-P coating containing same percent of P due to the Co addition. The Ni-Co-P coating with a combination of high corrosion resistance, high hardness and excellent magnetic properties would be expected to enlarge the applications of the aluminum alloys.  相似文献   

19.
Soft X-ray spectroscopy has important capabilities for investigating the surface region of metals and alloys. By calibrating the changes in the soft X-ray emission bands from both the metal and the oxygen, it is possible to determine the oxide thickness, the degree of oxidation, the element in the alloy with which the oxygen has combined, the relative amounts of alloying elements in the surface oxide, and the oxide state of a substrate metal that has a protective coating. For Ti-6Al-4V alloys there was an increase in surface oxygen after prebond treatment which was due to a change in the degree of oxidation rather than in oxide thickness, and the oxygen was combined with the titanium in the surface oxide. The oxygen K intensity distribution, from aluminum that was given a surface chromate treatment, showed that the oxygen is combined with the chromium. In Fe-Cr alloys there is an increase in the amount of chromium combined with oxygen relative to bulk chromium with decreasing chromium content. The oxide surface of steel with a 50 Å metal protective coating was reduced when the oxide of the protective metal coating had a heat formation greater than that of the iron oxide.  相似文献   

20.
Studies of the porosity in electroless nickel deposits on magnesium alloy   总被引:3,自引:0,他引:3  
In the present paper, the porosity of the plating coating was evaluated by the combination of corrodkote and filter paper, the effects of the plating solution on the porosity were investigated, and the properties of the porous coatings were studied through scanning electron microscopy (SEM) and electrochemical potentiodynamic polarization. The results show that the eriothrome black T indicator used as an indicator of the coating porosity for coatings on magnesium alloy is more effective than magneson indicator and sodium alizarinesulfonate indicator. The porosity in electroless nickel deposits on magnesium alloy was well evaluated by the combination of corrodkote and filter paper. It is revealed that the pores exist on both grain surface and grain boundaries. An affecting trend of the plating bath parameters on the coating porosity was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号