首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 133 毫秒
1.
Arsenic doped p-type ZnO thin films were grown on sapphire substrate by magnetron sputtering. As grown films reveal p-type conduction confirmed by Hall-effect and photoluminescence measurements. The p-type film with a hole concentration of 2.16× 1017 cm−3, mobility of 1.30 cm2/V.s and resistivity of 22.29 Ω-m were obtained at substrate temperature of 700 °C. ZnO homojunction synthesized by in-situ deposition of As doped p-ZnO layer on Al doped n-ZnO layer showed p-n diode like characteristics. X-ray pole figure and Transmission Electron Microscope studies confirm epitaxial nature of the films. Photoluminescence results exhibit the peaks associated with donor acceptor pair emission.  相似文献   

2.
Ag-doped ZnO (ZnO:Ag) thin films were grown on glass substrates by E-beam evaporation technique. The structural, electrical and optical properties of the films were investigated as a function of annealing temperature. The films were subjected to post annealing at different temperatures in the range of 350-650 °C in an air ambient. All the as grown and annealed films at temperature of 350 °C showed p-type conduction. The films lost p-type conduction after post annealing treatment temperature of above 350 °C, suggesting a narrow post annealing temperature window for the fabrication of p-type ZnO:Ag films. ZnO:Ag film annealed at 350 °C revealed lowest resistivity of 7.25 × 10−2 Ω cm with hole concentration and mobility of 5.09 × 1019 cm−3 and 1.69 cm2/V s, respectively. Observation of a free-to-neutral-acceptor (e,Ao) and donor-acceptor-pair (DAP) emissions in the low temperature photoluminescence measurement confirms p-type conduction in the ZnO:Ag films.  相似文献   

3.
Al and N codoped ZnO thin films were grown on n-Si (100) substrate by sputtering technique. Hall effect measurements of as-grown films exhibited n-type conduction, however 500 °C Ar annealed codoped films showed p-type conductivity with a hole concentration of 9.9 × 1016 cm− 3, resistivity of 15.95 Ω-cm and hole mobility of 3.95 cm2/Vs, respectively. Codoped ZnO thin films were found to be highly c-axis oriented with good crystal quality. A neutral acceptor-bound exciton and donor-acceptor-pair emissions that appeared at room temperature photoluminescence measurement verify p-type conduction in Al and N codoped ZnO film. The current-voltage characteristics of p-n heterojunction evidently showed a diode like rectifying behaviour.  相似文献   

4.
Nitrogen-doped ZnO thin films have been prepared by reactive ion beam sputtering deposition utilizing a capillaritron ion source. X-ray diffraction (XRD) analysis of the as-deposited film exhibits a single strong ZnO (002) diffraction peak centred at 34.40°. Post-growth annealing causes increase of grain size and decrease of c-axis lattice constant. Micro-Raman spectroscopy analysis of the as-deposited film shows strong nitrogen-related local vibration mode at 275, 582, 640 and 720 cm−1, whereas the E2 mode of ZnO at 436 cm−1 can barely be identified. Annealing at 500-800 °C causes decrease of 275, 582, 640 and 720 cm−1 and increase of 436 cm−1 intensity, indicating out-diffusion of nitrogen and improvement of ZnO crystalline quality. Unlike un-doped ZnO, the surface roughness of nitrogen-doped ZnO deteriorates after annealing, which is also attributed to the out-diffusion of nitrogen. A nitrogen concentration of ∼1021/cm3 was observed while type conversion from n-type to p-type was not achieved, which is likely due to the formation of ZnI-NO or (N2)O that act as donor/double donors.  相似文献   

5.
Phosphorus-doped p-type ZnO thin films have been realized by metalorganic chemical vapor deposition (MOCVD). The conduction type of ZnO films is greatly dependent on the growth temperature. ZnO films have the lowest resistivity of 11.3 Ωcm and the highest hole concentration of 8.84 × 1018 cm−3 at 420 °C. When the growth temperature is higher than 440 °C, p-type ZnO films cannot be achieved. All the films exhibited p-type conduction after annealing, and the electrical properties were improved comparing with the as-grown samples. Secondary ion mass spectroscopy (SIMS) test proved that phosphorus (P) has been incorporated into ZnO.  相似文献   

6.
N-In codoped ZnO thin films were prepared by ion beam enhanced deposition method (IBED) and were annealed in nitrogen and oxygen ambient after deposition. The influence of post-annealing on structure, electrical and optical properties of thin films were investigated. As-deposited and all post-annealed samples showed preferential orientation along (0 0 2) plane. Electrical property studies indicated that the as-deposited ZnO film showed p-type with a sheet resistance of 67.5 kΩ. For ZnO films annealed in nitrogen with the annealing temperature increasing from 400 to 800 °C, the conduction type of the ZnO film changed from p-type to n-type. However, for samples annealed in oxygen the resistance increased sharply even at a low annealing temperature of 400 °C and the conduction type did not change. Room temperature PL spectra of samples annealed in N2 and in O2 showed UV peak located at 381 and 356 nm, respectively.  相似文献   

7.
N-doped p-type ZnO (p ∼ 1018cm-3) was grown on sapphire(0 0 0 1) substrate by metal-organic chemical vapor deposition method. Ni/Au metal was evaporated on the ZnO film to form contacts. As-deposited contacts were rectifying while ohmic behavior was achieved after thermally annealing the contacts in nitrogen environment. Specific contact resistance was determined by circular transmission line method and a minimum specific contact resistance of 8 × 10−4 Ω cm2 was obtained for the sample annealed at 650 °C for 30 s. However, Hall effect measurements indicate that, as the rapid thermal annealing temperature increased up to 550 °C or higher the samples’ conductive type have changed from p-type to n-type, which may be due to the instability nature of the present-day p-type N-doped ZnO or the dissociation of ZnO caused by annealing process in N2 ambient. Evolution of the sample's electric characteristics and the increment of metal/semiconductor interface states induced by rapid thermal annealing process are supposed to be responsible for the improvement of electrical properties of Au/Ni/ZnO.  相似文献   

8.
Al-N co-doped ZnO (ZnO:Al-N) thin films were grown on n-Si (1 0 0) substrate by RF co-sputtering technique. As-grown ZnO:Al-N film exhibited n-type conductivity whereas on annealing in Ar ambient the conduction of ZnO:Al-N film changes to p-type, typically at 600 °C the high hole concentration of ZnO:Al-N co-doped film was found to be 2.86 × 1019 cm−3 and a low resistivity of 1.85 × 10−2 Ω-cm. The current-voltage characteristics of the obtained p-ZnO:Al-N/n-Si heterojunction showed good diode like rectifying behavior. Room temperature photoluminescence spectra of annealed co-doped films revealed a dominant peak at 3.24 eV.  相似文献   

9.
P doped ZnO films were grown on quartz by radio frequency-magnetron sputtering method using a ZnO target mixed with 1.5 at% P2O5 in the atmosphere of Ar and O2 mixing gas. The as-grown P doped ZnO film showed n-type conductivity, which was converted to p-type after 800 °C annealing in Ar gas. The P doped ZnO has a resistivity of 20.5 Ω cm (p∼2.0×1017 cm−3) and a Hall mobility of 2.1 cm2 V−1 s−1. XRD measurement indicated that both the as-grown and the annealed P doped ZnO films had a preferred (0 0 2) orientation. XPS study agreed with the model that the PZn-2VZn acceptor complex was responsible for the p-type conductivity as found in the annealed P-doped ZnO. Temperature-dependent photoluminescence (PL) spectrum showed that the dominant band is located at 3.312 eV, which was attributed to the free electronic radiative transition to neutral acceptor level (FA) in ZnO. The PZn-2VZn acceptor complex level was estimated to be at EV=122 meV.  相似文献   

10.
In order to obtain p-type ZnO thin films, effect of atomic ratio of Zn:N:Al on the electronic and structural characteristic of ZnO thin films was investigated. Hall measurement indicated that with the increase of Al doping, conductive type of as-grown ZnO thin films changed from n-type to p-type and then to n-type again, reasons are discussed in details. Results of X-ray diffraction revealed that co-doped ZnO thin films have similar crystallization characteristic (0 0 2 preferential orientation) like that of un-doping. However, SEM measurement indicated that co-doped ZnO thin films have different surface morphology compared with un-doped ZnO thin films. p-type ZnO thin films with high hole concentration were obtained on glass (4.6 × 1018 cm−3) and n-type silicon (7.51 × 1019 cm−3), respectively.  相似文献   

11.
ZnO:N thin films were deposited on sapphire substrate by metal organic chemical vapor deposition with NH3 as N-doping sources. The reproducible p-type ZnO:N film with hole concentration of ∼1017 cm−3 was successfully achieved by subsequent in situ thermal annealing in N2O plasma protective ambient, while only weak p-type ZnO:N film with remarkably lower hole concentration of ∼1015 cm−3 was obtained by annealing in O2 ambient. To understand the mechanism of the p-type doping behavior of ZnO:N film, X-ray photoelectron spectroscopy (XPS) and soft X-ray absorption near-edge spectroscopy (XANES) measurements have been applied to investigate the local electronic structure and chemical states of nitrogen atoms in ZnO:N films.  相似文献   

12.
To resolve the problem of p-type doping in ZnO, nitrogen and aluminum (N-Al) codoped ZnO films were prepared by the ultrasonic spray pyrolysis (USP) technique. The structural and electrical properties of N-Al codoped ZnO films were investigated. The results demonstrate that the undoped ZnO films exhibit the preferential orientation of (002) plane, while ZnO films show high orientation of (101) plane after codoping with N and Al. The N-Al codoped ZnO films under optimum conditions show p-type conduction, with a low resistivity of 1.7×10−2Ω cm, carrier concentration of 5.09×1018 cm−3 and high Hall mobility of 73.6 cm2 V−1 s−1. A conversion from p-type conduction to n-type was observed during the increase of measurement temperature.  相似文献   

13.
Li-N dual-doped p-type ZnO (ZnO:(Li,N)) thin films have been prepared by pulsed laser deposition. The introduction of Li and N was confirmed by secondary ion mass spectrometry measurements. The structural, electrical, and optical properties as a function of growth temperature were investigated in detail. The lowest room-temperature resistivity of 3.99 Ω cm was achieved at the optimal temperature of 450 °C, with a Hall mobility of 0.17 cm2/V s and hole concentration of 9.12 × 1018 cm−3. The ZnO:(Li,N) films exhibited good crystal quality with a complete c-axis orientation, a high transmittance (about 90%) in the visible region, and a predominant UV emission at room temperature. The two-layer-structure p-ZnO:(Li,N)/n-ZnO homojunctions were fabricated on a sapphire substrate. The current-voltage characteristics exhibited the rectifying behavior of a typical p-n junction.  相似文献   

14.
J.C. Fan 《Applied Surface Science》2008,254(20):6358-6361
p-Type ZnO:As films with a hole concentration of 1016-1017 cm−3 and a mobility of 1.32-6.08 cm2/V s have been deposited on SiO2/Si substrates by magnetron sputtering. XRD, SEM, Hall measurements are used to investigate the structural and electrical properties of the films. A p-n homojunction comprising an undoped ZnO layer and a ZnO:As layer exhibits a typical rectifying behavior. Our study demonstrates a simple method to fabricate reproducible p-type ZnO film on the SiO2/Si substrate for the development of ZnO-based optoelectronic devices on Si-based substrates.  相似文献   

15.
Al-N co-doped ZnO films were fabricated by gaseous ammonia annealing at various temperatures. The structure and the electrical properties of Al-N-doped ZnO films strongly depend on the annealing temperature. XRD and SEM analysis indicate that the ZnO films possess a good crystallinity with c-axis orientation, uniform thickness and dense surface. Optical transmission spectra show a high transmittance (∼85%) in the visible region. Hall measurement demonstrates that ZnO films have p-type conduction with high carrier concentration of 8.3 × 1018 cm−3 and low resistivity of 25.0 Ω cm when the annealing temperature is 700 °C. Also the growth process of Al-N co-doped at various temperatures is discussed in detail.  相似文献   

16.
ZnO films with different morphologies were deposited on the ITO-coated glass substrate from zinc nitrate aqueous solution at 65 °C by a seed-layer assisted electrochemical deposition route. The seed layers were pre-deposited galvanostatically at different current densities (isl) ranging from −1.30 to −3.0 mA/cm2, and the subsequent ZnO films had been done using the potentiostatic technique at the cathode potential of −1.0 V. Densities of nucleation centers in the seed layers varied with increasing the current density, and the ZnO films on them showed variable morphologies and optical properties. The uniform and compact nanocrystalline ZnO film with (0 0 2) preferential orientation was obtained on seed layer that was deposited under the current density (isl) of −1.68 mA/cm2, which exhibited good optical performances.  相似文献   

17.
ZnO film was firstly prepared by PA-MOCVD method on the substrate pre-coated with GaAs interlayer. Hall measurement found that the GaAs interlayer had important effects on the electrical behavior of the ZnO film. It could make the ZnO film convert to p-type conductivity. The XPS results confirmed that the acceptor was arsenic. And the acceptor level was 130 meV above the ZnO valence band maximum. Low-temperature PL measurement was introduced to investigate the optical properties of both as-grown n-type and arsenic doped p-type ZnO films. Then, based on this technology, ZnO homojunction light emitting device (LED) was fabricated with arsenic doped p-type ZnO and unintentionally doped n-type ZnO on GaAs/p+-Si substrate. Its current-voltage (I-V) character showed a typical rectification behavior, which was different from the n-ZnO/p+-Si structure. The UV-visible (385-580 nm) electroluminescence was detected under relatively low current injection condition from the n-ZnO/p-ZnO/p+-Si LED.  相似文献   

18.
Ga and N co-doped p-type ZnO thin films were epitaxially grown on sapphire substrate using magnetron sputtering technique. The process of synthesized Ga and N co-doped ZnO films was performed in ambient gas of N2O. Hall measurement shows a significant improvement of p-type characteristics with rapid thermal annealing (RTA) process in N2 gas flow, where more N acceptors are activated. The film rapid thermal annealed at 900 °C in N2 ambient revealed the highest carrier concentration of 9.36 × 1019 cm−3 and lowest resistivity of 1.39 × 10−1 Ω cm. In room and low temperature photoluminescence measurements of the as grown and RTA treated film, donor acceptor pair emission and exciton bound to acceptor recombination at 3.25 and 3.357 eV, respectively, were observed.  相似文献   

19.
A p-ZnO:N/n-GaN:Si structure heterojunction light-emitting diode (LED) is fabricated on c-plane sapphire by full metal organic chemical vapor deposition (MOCVD) technique. The p-type layer with hole concentration of 8.94×1016 cm−3 is composed of nitrogen-doped ZnO using NH3 as the doping source with subsequent annealing in N2O plasma ambient. Silicon-doped GaN film with electron concentration of 1.15×1018 cm−3 is used as the n-type layer. Desirable rectifying behavior is observed from the current-voltage (I-V) curve of the device. The forward turn on voltage is about 4 V and the reverse breakdown voltage is more than 7 V. A distinct ultraviolet (UV) electroluminescence (EL) with a dominant emission peak centered at 390 nm is detected at room temperature from the heterojunction structure under forward bias conditions. The origins of the EL emissions are discussed in comparison with the photoluminescence (PL) spectra.  相似文献   

20.
Structural, electrical, and optical properties of atomic layer-controlled Al-doped ZnO (ZnO:Al) films grown by atomic layer deposition (ALD) on glass substrates were characterized at various growth temperatures for use as transparent electrodes. The Al atomic content in ZnO:Al films increased due to the reduced ZnO film growth rate with increasing temperature. The preferred orientation of ZnO:Al films was changed, and the optimum condition for best crystallinity was identified by varying the growth temperature. Furthermore, the carrier concentration of free electron was increased by substituting the Zn sites with Al atoms in the crystal, resulting from monolayer growth based on alternate self-limiting surface chemical reactions. The electrical resistivity of ZnO:Al film grown by ALD at 225 °C reached the lowest value of 8.45 × 10−4 Ω cm, with a carrier mobility of 9.00 cm2 V−1 s−1 and optical transmittance of ∼93%. This result demonstrates that ZnO:Al films grown by ALD possess excellent potential for applications in electronic devices and displays as transparent electrodes and surface passivation layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号