首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
A regenerated activated carbon used as catalyst support in the synthesis of vinyl acetate has been tested as a low-cost adsorbent for the removal of dyes. After a thorough textural characterization of the regenerated activated carbon, its adsorption isotherms and kinetics were determined using methylene blue as model compound at different initial concentrations. Both Langmuir and Freundlich isotherm models were developed and then compared. It was found that the equilibrium data were best represented by the Langmuir isotherm model. The kinetic data were fitted to pseudo-first-order, pseudo-second-order and intraparticle diffusion models, and it was found that the best fitting corresponded to the pseudo-second-order kinetic model. The results showed that this novel adsorbent had a high adsorption capacity, making it suitable for use in the treatment of methylene blue enriched wastewater.  相似文献   

2.
Multi-walled carbon nanotubes (MWCNTs) were functionalized with cysteamine groups by several percentage of mass as adsorbents, then kinetics adsorption capacity was investigated for methylene blue (MB) and methyl orange (MO) as anionic and cationic dyes adsorbate molecules, respectively. The effect of temperature (from 283 to 303 K), contact time and initial concentration of the MB and MO dyes in a solution (10 to 40 ppm) was considered. The optimal contact time was found to be about 60 min. Some kinetics model such as pseudo-first-order, pseudo-second-order, intra-particle diffusion and the Elovich were tested. The adsorptions of MB dye on the pristine and functionalized MWCNT surfaces were found to be the intra-particle diffusion and the pseudo-second-order kinetic model, respectively and for adsorption of MO dye by the pristine and low functionalized MWCNTs and highly functionalized tubes, found to be the pseudo-second-order and intra-particle diffusion kinetic model, respectively, based on the chi-square statistic (X2) and also high correlation coefficient (R2) values.  相似文献   

3.
A γ-Fe2O3/SiO2/chitosan composite was prepared by water-in-oil emulsification, and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM). Effects of various factors, including adsorbent dosage, initial dye concentration, solution pH, and competing anions, on the adsorption of methyl orange from aqueous solutions by the resulting composite were studied by batch adsorption experiments. The adsorption kinetics was found to follow the pseudo-second-order kinetic model, and intraparticle diffusion was related to the adsorption, but not as a sole rate-controlling step. The equilibrium adsorption data were well described by the Freundlich isotherm model. Evaluation of the thermodynamic parameters ΔG°, ΔH°, and ΔS° revealed that the adsorption process was naturally feasible, spontaneous, and exothermic. The composite was proven to be efficient, suitable and promising for the removal of methyl orange from aqueous solutions since it has a relatively higher adsorption capacity than other low-cost adsorbents.  相似文献   

4.
This study investigates the potential use of bael shell carbon (BSC) as an adsorbent for the removal of congo red (CR) dye from aqueous solution. The effect of various operational parameters such as contact time, temperature, pH, and dye concentration were studied. The adsorption kinetics was modeled by first-order reversible kinetics, pseudo-first-order kinetics, and pseudo-second-order kinetics. The dye uptake process obeyed the pseudo-second-order kinetic expression at pH 5.7, 7 and 8 whereas the pseudo-first-order kinetic model was fitted well at pH 9. Langmuir, Freundlich and Temkin adsorption models were applied to fit adsorption equilibrium data. The best-fitted data was obtained with the Freundlich model. Thermodynamic study showed that adsorption of CR onto BSC was endothermic in nature and favorable with the positive ΔH° value of 13.613 kJ/mol.  相似文献   

5.
Polyaniline (PANI) synthesized by simple CDs (carbon dots) initiated polymerization has formed a composite with TiO2 and SiO2, respectively via a sonochemical method. These PANI@TiO2 and PANI@SiO2 composites were proven as effective adsorbent materials to rapidly adsorb the anionic and cationic dyes from wastewater at neutral pH and ambient temperature. Selected popular cationic and anionic organic dyes consisted of methylene blue (MB), brilliant blue (BB), Evans blue (EB), crystal violet (CV), Congo red (CR), rhodamine B (RB), and rhodamine 6G (R6G). The adsorption equilibria were governed by Langmuir and Freundlich isotherms. The kinetic results revealed that the PANI@TiO2 and PANI@SiO2 composite materials synthesized via the sonochemical method are efficient adsorbents compared to other adsorbent materials for the removal of organic dyes from the water. The adsorbed dyes were effectively desorbed from the composites, rendering the reusability of PANI@TiO2 and PANI@SiO2. The estimated adsorption capacities of PANI@TiO2 and PANI@SiO2 composites were 89, 93, 80, 94 and 74, 71, 61, 61 mg/g for MB, CR, CV, and R6G, respectively.  相似文献   

6.
The adsorption and photodegradation behavior of methyl orange (MO) and fast green (FG) over ZnAl- and MgAl-based layered double hydroxide (LDH) adsorbents have been examined. ZnAl-LDHs were prepared with Zn/Al ratios of 2 to 4 by co-precipitation at pH 8. The ZnAl-LDHs and a commercial MgAl-LDH with a Mg/Al ratio of 3 were evaluated for their ability to adsorb MO and FG and for the photodegradation behavior of these dyes under UV irradiation. Structure analysis of the LDH-dyes-adsorbed complexes revealed that the adsorption produced two types of structures, an intercalation complex for MO and a surface-adsorbed complex for FG. The maximum adsorption of MO on the LDHs was significantly higher (more than tenfold) than FG. Results indicated the adsorption isotherms for the retention of both dyes by ZnAl- and MgAl-LDHs could be fitted to a Freundlich equation, showing a higher affinity for dyes on MgAl-LDH compared to those on ZnAl-LDH. The catalytic degradation ability of dye-LDH complex solid films on a quartz plate was superior to pure dye films under UV irradiation. The FG non-intercalated LDH complexes showed much faster photodegradation under UV irradiation than the MO-intercalated LDH complexes, which pointed to the important role of the LDH materials containing sensitized dyes in enhancing the generation of labile hydroxyl ions from the hydrophilic LDH surface.  相似文献   

7.
Static and kinetic studies on adsorption of methylene blue on four synthesized mesoporous carbons are presented. The carbon properties are analyzed by means of nitrogen adsorption. The static experiments are analyzed by means of Langmuir-Freundlich and Freundlich isotherms. The Lagergren, pseudo-second-order and mixed order as well as the multi-exponent equations are used in analysis of kinetic equilibria. The properties of rate equations are compared and analyzed.  相似文献   

8.
Metal-organic frameworks (MOFs) were successfully synthesized by ultrasonic wave-assisted ball milling. In the absence of organic solvent, the coupling effect of ultrasonic wave and mechanical force played an significant role in the synthesis of MOFs. Adsorption of Congo red (CR) was studied in view of adsorption kinetic, isotherm and thermodynamics. The adsorbent was carried out using X-ray diffraction (XRD), thermogravimetric analysis (TGA), N2 adsorption-desorption isotherms, Raman spectroscopy and scanning electron microscope (SEM) methods. It was found that pseudo-second-order kinetic model and Freundlich adsorption isotherm matched well for the adsorption of CR onto nickel-based metal-organic framework/graphene oxide composites (Ni-MOF/GO). The results of the adsorption thermodynamics indicated that the adsorption process was a spontaneous and endothermic process. The adsorption capacity of graphene oxide/metal-organic frameworks (GO/MOFs) for CR reached 2489 mg/g, much higher than previous reports. It was demonstrated that an increase in the number of active metal sites can dramatically improve the adsorption capacity of dye. A suitable dry temperature is beneficial for the improvement of adsorption capacity for dye. In this paper, the adsorption results indicated that ultrasonic wave-assisted ball milling has a good prospect for synthesis of MOFs with excellent adsorption performance.  相似文献   

9.
Static and kinetic studies on adsorption of nitrobenzene, 4-nitrophenol and 4-chlorophenol on two mesoporous carbons are performed. The carbon properties are analyzed by means of nitrogen adsorption. The adsorption experiments are performed in acidic buffer solutions in a wide range of concentrations. The static experiments are analyzed by means of Langmuir-Freundlich and Freundlich isotherms. The Lagergren, pseudo-second-order, intraparticle-diffusion and multi-exponent equations are used in the analysis of kinetic equilibria.  相似文献   

10.
分光光度法研究粉煤灰对亚甲基蓝的吸附及其机理研究   总被引:2,自引:0,他引:2  
以龙岩雁石火电厂粉煤灰对亚甲基蓝进行吸附实验,探讨了改性粉煤灰、粉煤灰用量、吸附时间、温度对亚甲基蓝吸附的影响。当粉煤灰投加量为4g/L,亚甲基蓝浓度15mg/L,常温条件下,在60min左右,亚甲基蓝降解率达到了98%以上。结果表明,利用粉煤灰处理亚甲基蓝,具有处理效果好、简单,经济等特点。利用Freundlich等温式和Langmuir等温式对其吸附行为进行描述,表明粉煤灰易于吸附亚甲基蓝,吸附属于化学吸附;用颗粒内扩散方程和准二级吸附动力学方程对实验数据进行回归分析,更好地描述亚甲基蓝在粉煤灰上的吸附。准二级吸附动力学方程能够反映亚甲基蓝在粉煤灰上的吸附机理,准二级吸附速率常数k2=0.5758g/(mg.min)。本研究为粉煤灰处理印染废水提供了理论依据和实践依据。  相似文献   

11.
The aim of this study is to evaluate adsorption kinetics, isotherms and thermodynamic parameters of Reactive Blue 19 (RB19) onto modified bentonite from aqueous solutions. The effects of pH, contact time, initial dye concentration and temperature were investigated in the experimentally. Natural bentonite was modified by using 1,6-diamino hexane (DAH) as a modifying agent. The characterization of modified bentonite (DAH-bentonite) was accomplished by using FTIR, TGA, BET and elemental analysis techniques. The optimum pH value for the adsorption experiments was found to be 1.5 and all the experiments were carried out at this pH value. The pseudo-second-order kinetic model agrees very well with the experimental results. Equilibrium data were also fitted well to the Langmuir isotherm model in the studied concentration range of RB19 at 20 °C. The results indicate that DAH-modified bentonite is a suitable adsorbent for the adsorption of textile dyes.  相似文献   

12.
Highly ordered mesoporous material MCM-41 was synthesized from tetraethylorthosilicate (TEOS) as Si source and cetyltrimethylammonium bromide (CTAB) as template. Well-dispersed NiO nanoparticles were introduced into the highly ordered mesoporous MCM-41 by chemical precipitation method to prepare the highly ordered mesoporous NiO/MCM-41 composite. X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM) and high-resolution TEM (HRTEM), and nitrogen adsorption–desorption measurement were used to examine the morphology and the microstructure of the obtained composite. The morphological study clearly revealed that the synthesized NiO/MCM-41 composite has a highly ordered mesoporous structure with a specific surface area of 435.9 m2 g−1. A possible formation mechanism is preliminary proposed for the formation of the nanostructure. The adsorption performance of NiO/MCM-41 composite as an adsorbent was further demonstrated in the removal azo dyes of methyl orange (MO), Congo red (CR), methylene blue (MB) and rhodaming B (RB) under visible light irradiation and dark, respectively. The kinetics and mechanism of removal methylene blue were studied. The results show that NiO/MCM-41 composite has a good removal capacity for organic pollutant MB from the wastewater under the room temperature. Compared with MCM-41 and NiO nanoparticles, 54.2% and 100% higher removal rate were obtained by the NiO/MCM-41 composite.  相似文献   

13.
Polydopamine coated sea buckthorn branch powder (PDA@SBP) was facilely synthesized via a one-pot bio-inspired dip-coating approach. The as-synthesized PDA@SBP was characterized using Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The adsorption progresses of Safranine T on the surface of PDA@SBP adsorbent were systematically investigated. More specifically, the effects of solution pH, contact time, initial concentration and temperature were evaluated, respectively. The experimental results showed the adsorption capacity of PDA@SBP at 293.15 K could reach up to 54.0 mg/g; the adsorption increased by 201.7% compared to that of native SBP (17.9 mg/g). Besides, kinetics studies showed that pseudo-second-order kinetic model adequately described the adsorption behavior. The adsorption experimental data could be fitted well a Freundlich isotherm model. Thermodynamic analyses showed that the ST adsorption was a physisorption endothermic process. Regeneration of the spent PDA@SBP adsorbent was conducted with 0.1 M HCl without significant reduction in adsorption capacity. On the basis of these investigations, it is believed that the PDA@SBP adsorbent could have potential applications in sewage disposal areas because of their considerable adsorption capacities, brilliant regeneration capability, and cost-effective and eco-friendly preparation and use.  相似文献   

14.
The use of a biocompatible and thermoresponsive polymer, poly(2-hydroxyethyl methacrylate) (PHEMA) grafted onto the surface of graphene oxide (GO) as an adsorbent for the removal of a cationic dye (methylene blue [MB]) from an aqueous solution is examined in this work. GO–PHEMA forms a hydrogel in water thus overcoming the problem faced by carbon-based adsorbent materials during post-treatment (i.e., separation of adsorbent from the aqueous phase). The GO–PHEMA composite was synthesized using a green approach through dispersion polymerization in supercritical CO2. The successful preparation of this composite was confirmed by a series of characterization techniques. The adsorption behavior of the composite toward MB such as the effect of the adsorbent dosage, pH, contact time, dye concentration, and recyclability were observed. In addition, the adsorption isotherm, kinetics and thermodynamics were investigated. According to the experimental data, the adsorption parameters were found to fit well into the Freundlich adsorption isotherm with a correlation coefficient of 0.975 and a maximum predicted adsorption capacity of 39.41 mg g?1 at 25 °C. The adsorption kinetics studies showed that the adsorption behavior followed a pseudo-second-order reaction. On the other hand, the thermodynamics studies showed that the adsorption of MB on GO–PHEMA composite followed spontaneous and endothermic adsorption process with an efficient adsorption temperature at 45 °C. The experimental results also showed that the GO–PHEMA composite could remove 99.8% of the dye in 45 min. Therefore, GO–PHEMA composite is a favorable green adsorbent for environmental applications.  相似文献   

15.
Modified palygorskite with 3-aminopropyltriethoxysilane (KH550) and N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (KH792) were used as adsorbent supports for adsorption of 12-phosphotungstic acid (H3PW12O40, HPW). The effect of some factors, such as adsorbent dosage, contact time, initial HPW concentration and temperature, was investigated. The experimental data were well fitted with the pseudo-second-order kinetic model and the Langmuir adsorption isotherm model at all studied temperatures. The physicochemical properties of the solids were characterized by using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis-simultaneous differential thermal analysis (TGA-SDTA), and diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy analysis techniques. The characteristic results indicated that silylated-Pa was a suitable support for adsorption of HPW; and HPW was finely and effectively distributed on silylated-Pa and retained partly strong Bronsted acidity.  相似文献   

16.
A one-step, green process is reported for synthesis of poly([2-(methacryloyloxy)ethyl] trimethylammonium chloride) (PMETAC) modified bentonite (Bent-PMETAC). The Bent-PMETAC was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Zeta potential, scanning electron microscopy (SEM) and thermal gravimetric analysis (TGA). The results indicated that large amounts of PMETAC were successfully grafted on the surface and interlayers of bentonite, and changed the Zeta potential of the sample from negative to positive. Acid Orange 7 (AO 7), as adsorbate, was used to test the anionic dye adsorption of the samples. The batch adsorption results implied that this novel Bent-PMETAC adsorbent exhibited a much higher removal (95%) of AO 7 than bentonite (10%). In addition, the adsorption process was hardly influenced by pH, which is in good agreement with the results of the Zeta potential analysis. The equilibrium adsorption isotherms and the adsorption kinetics of AO 7 fitted well to the Langmuir model and pseudo-second-order kinetic model, respectively. The maximum adsorption capacity of AO 7 onto Bent-PMETAC was 208.6?mg·g?1 at 298?K, which is much higher than for most other materials. Overall, the results indicated the Bent-PMETAC is a low-cost, simple synthesis and highly efficient adsorbent for anionic dye removal from aqueous solutions.  相似文献   

17.
以马来酸酐和丙烯酰胺为功能单体,N,N-亚甲基双丙烯酰胺为交联剂,过硫酸铵为引发剂合成了马来酸酐、丙烯酰胺共聚物吸附剂P(MA-AM)。用傅里叶变换红外光谱(FTIR)和热重分析对共聚物进行了表征,并采用电感耦合等离子体原子发射光谱(ICP-AES)法研究了共聚物的吸附性能和选择性;结果表明,在pH 3.5时,P(MA-AM)对Fe3+具有很高的选择性,1 h达吸附平衡,其饱和吸附量为78.81 mg·g-1;Fe3+的吸附过程符合准二级反应动力学模型,吸附模型可以用Freundlich等温吸附来描述,该吸附为吸热过程。  相似文献   

18.
Optics and Spectroscopy - Nowadays, few-layer graphene (FLG) has been introduced as a new type of adsorbent. In this research, the orange dyes including, methyl orange (MO) as an industrial dye and...  相似文献   

19.
通过KOH活化纸巾制备活性炭纤维, 比表面积高达1388 m2/g. 用制得的活性炭纤维作为吸附剂进行亚甲基蓝吸附实验研究,用Langmuir和Freundlich吸附模型分析实验数据,并研究pH值对活性炭纤维吸附亚甲基蓝影响. 活性炭纤维吸附速率更适于Pseudo-second-order动力学模型,相关系数高达0.998. 整个浓度变化区间Langmuir吸附等温线比Freundlich吸附等温线更适合实验数据. 所制备活性炭纤维对亚甲基蓝最大平衡吸附量为520 mg/g,实验发现,pH值越高活性炭纤维对亚甲基蓝吸附量越大.  相似文献   

20.
γ-Fe2O3 nanoparticles were synthesized and loaded on activated carbon. The prepared nanomaterial was characterized by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transforms infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The γ-Fe2O3 nanoparticle-loaded activated carbon (γ-Fe2O3-NPs-AC) was used as novel adsorbent for the ultrasonic-assisted removal of methylene blue (MB) and malachite green (MG). Response surface methodology and artificial neural network were applied to model and optimize the adsorption of the MB and MG in their individual and binary solutions followed by the investigation on adsorption isotherm and kinetics. The individual effects of parameters such as pH, mass of adsorbent, ultrasonication time as well as MB and MG concentrations in addition to the effects of their possible interactions on the adsorption process were investigated. The numerical optimization revealed that the optimum adsorption (>99.5% for each dye) is obtained at 0.02 g, 15 mg L−1, 4 min and 7.0 corresponding to the adsorbent mass, each dye concentration, sonication time and pH, respectively. The Freundlich, Langmuir, Temkin and Dubinin–Radushkevich isotherms were studied. The Langmuir was found to be most applicable isotherm which predicted maximum monolayer adsorption capacities of 195.55 and 207.04 mg g−1 for the adsorption of MB and MG, respectively. The pseudo-second order model was found to be applicable for the adsorption kinetics. Blank experiments (without any adsorbent) were run to investigate the possible degradation of the dyes studied in presence of ultrasonication. No dyes degradation was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号