首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present study was focused on the removal of methylene blue (MB) from aqueous solution by ultrasound-assisted adsorption onto the gold nanoparticles loaded on activated carbon (Au-NP-AC). This nanomaterial was characterized using different techniques such as SEM, XRD, and BET. The effects of variables such as pH, initial dye concentration, adsorbent dosage (g), temperature and sonication time (min) on MB removal were studied and using central composite design (CCD) and the optimum experimental conditions were found with desirability function (DF) combined response surface methodology (RSM). Fitting the experimental equilibrium data to various isotherm models such as Langmuir, Freundlich, Tempkin and Dubinin–Radushkevich models show the suitability and applicability of the Langmuir model. Analysis of experimental adsorption data to various kinetic models such as pseudo-first and second order, Elovich and intraparticle diffusion models show the applicability of the second-order equation model. The small amount of proposed adsorbent (0.01 g) is applicable for successful removal of MB (RE > 95%) in short time (1.6 min) with high adsorption capacity (104–185 mg g−1).  相似文献   

2.
Copper oxide nanoparticles loaded on activated carbon (CuO-NPs-AC) were prepared and fully analyzed and characterized with FE-SEM, XRD and FT-IR. Subsequently, this novel material was used for simultaneous ultrasound-assisted adsorption of brilliant green (BG), auramine O (AO), methylene blue (MB) and eosin yellow (EY) dyes. Problems regard to dyes spectra overlap in quaternary solution of this dyes were omitted by derivative spectrophotometric method. The best pH in quaternary system was studied by using one at a time method to achieved maximum dyes removal percentage. Subsequently, sonication time, adsorbent dosage and initial dyes concentrations influence on dyes removal was optimized by central composite design (CCD) combined with desirability function approach (DFA). Desirability score of 0.978 show optimum conditions set at sonication time (4.2 min), adsorbent mass (0.029 g), initial dyes concentration (4.5 mg L−1). Under this optimum condition the removal percentage for MB, AO, EY and BG dyes 97.58, 94.66, 96.22 and 94.93, respectively. The adsorption rate well fitted by pseudo second-order while adsorption capacity according to the Langmuir model as best equilibrium isotherm model for BG, MB, AO and EY was 20.48, 21.26, 22.34 and 21.29 mg g−1, respectively.  相似文献   

3.
γ-Fe2O3 nanoparticles were synthesized and loaded on activated carbon. The prepared nanomaterial was characterized by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transforms infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The γ-Fe2O3 nanoparticle-loaded activated carbon (γ-Fe2O3-NPs-AC) was used as novel adsorbent for the ultrasonic-assisted removal of methylene blue (MB) and malachite green (MG). Response surface methodology and artificial neural network were applied to model and optimize the adsorption of the MB and MG in their individual and binary solutions followed by the investigation on adsorption isotherm and kinetics. The individual effects of parameters such as pH, mass of adsorbent, ultrasonication time as well as MB and MG concentrations in addition to the effects of their possible interactions on the adsorption process were investigated. The numerical optimization revealed that the optimum adsorption (>99.5% for each dye) is obtained at 0.02 g, 15 mg L−1, 4 min and 7.0 corresponding to the adsorbent mass, each dye concentration, sonication time and pH, respectively. The Freundlich, Langmuir, Temkin and Dubinin–Radushkevich isotherms were studied. The Langmuir was found to be most applicable isotherm which predicted maximum monolayer adsorption capacities of 195.55 and 207.04 mg g−1 for the adsorption of MB and MG, respectively. The pseudo-second order model was found to be applicable for the adsorption kinetics. Blank experiments (without any adsorbent) were run to investigate the possible degradation of the dyes studied in presence of ultrasonication. No dyes degradation was observed.  相似文献   

4.
《Solid State Ionics》2009,180(40):1646-1651
NiO–C nanocomposite was prepared by a spray pyrolysis method using a mixture of Ni(NO3)2 and citric acid solution at 600 °C. The microstructure and morphology of the NiO–C composite were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) mapping, and thermogravimetric analysis (TGA). The results showed that the NiO nanoparticles were surrounded by amorphous carbon. Electrochemical tests demonstrated that the NiO–C nanocomposites exhibited better capacity retention (382 mAh g 1 for 50 cycles) than that of pure NiO (141 mAh g 1 for 50 cycles), which was also prepared by spray pyrolysis using only Ni(NO3)2 as precursor. The enhanced capacity retention can be mainly attributed to the NiO–C composite structure, composed of NiO nanoparticles surrounded by carbon, which can accommodate the volume changes during charge–discharge and improve the electrical conductivity between the NiO nanoparticles.  相似文献   

5.
In this work, ultrasound-assisted adsorption of an anionic dye, sunset yellow (SY) and cationic dyes, malachite green (MG), methylene blue (MB) and their ternary dye solutions onto Cu@ Mn-ZnS-NPs-AC from water aqueous was optimized by response surface methodology (RSM) using the central composite design (CCD). The adsorbent was characterized using Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX) and EDX mapping images. The effects of various parameters such as pH, sonication time, adsorbent mass and initial concentrations of SY, MG and MB were examined. A total 33 experiments were conducted to establish a quadratic model. Cu@ Mn-ZnS-NPs-AC has the maximum adsorption efficiency (>99.5%) when the pH, sonication time, adsorbent mass and initial concentrations of SY, MG and MB were optimally set as 6.0, 5 min, 0.02 g, 9, 12 and 12 mg L−1, respectively. Sonication time has a statistically significant effect on the selected responses. Langmuir isotherm model was found to be best fitted to adsorption and adsorption capacities were 67.5 mg g−1 for SY, 74.6 mg g−1 for MG and 72.9 mg g−1 for MB. Four kinetic models (pseudo-first order, pseudo-second order, Weber–Morris intraparticle diffusion rate and Elovich) were tested to correlate the experimental data and the sorption was fitted well with the pseudo-second order kinetic model.  相似文献   

6.
Multi-walled carbon nanotubes (MWCNTs) were functionalized with cysteamine groups by several percentage of mass as adsorbents, then kinetics adsorption capacity was investigated for methylene blue (MB) and methyl orange (MO) as anionic and cationic dyes adsorbate molecules, respectively. The effect of temperature (from 283 to 303 K), contact time and initial concentration of the MB and MO dyes in a solution (10 to 40 ppm) was considered. The optimal contact time was found to be about 60 min. Some kinetics model such as pseudo-first-order, pseudo-second-order, intra-particle diffusion and the Elovich were tested. The adsorptions of MB dye on the pristine and functionalized MWCNT surfaces were found to be the intra-particle diffusion and the pseudo-second-order kinetic model, respectively and for adsorption of MO dye by the pristine and low functionalized MWCNTs and highly functionalized tubes, found to be the pseudo-second-order and intra-particle diffusion kinetic model, respectively, based on the chi-square statistic (X2) and also high correlation coefficient (R2) values.  相似文献   

7.
Present study is devoted on the efficient application of Sn (O, S)-NPs -AC for simultaneous sonicated accelerated adsorption of some dyes from single and multi-components systems. Sn (O, S) nanoparticles characterization by FESEM, EDX, EDX mapping and XRD revel its nano size structure with high purity of good crystallinity. Present adsorbent due to its nano spherical shape particles with approximate diameter of 40–60 nm seems to be highly effective in this regard. The effects of five variables viz. pH (3.5–9.5), 0.010–0.028 g of adsorbent and 0.5–6.5 min mixing by sonication is good and practical conditions for well and expected adsorption of MB and CV over concentration range of 3–15 mg L−1. Combination of response surface methodology (RSM) based on central composite design (CCD) and subsequent of analysis of variance (ANOVA) and t-test statistics were used to test the significance of the independent variables and their interactions. Regression analysis reveal that experimental data with high repeatability and efficiency well represented by second-order polynomial model with coefficient of determination value of 0.9988 and 0.9976 for MB and CV, respectively following conditions like pH 8.0, 0.016 g adsorbent, 15 mg L−1 of both dyes 4 min sonication time is proportional with achievement of experimental removal percentage of 99.80% of MB and 99.87% of CV in batch experiment. Evaluation and estimation of adsorption data with Langmuir and Freundlich isotherm well justify the results based on their correlation coefficient and error analysis confirm that Langmuir model is good model with adsorption capacity of 109.17 and 115.34 mg g−1 in single system and 95.69 and 102.99 mg g−1 in binary system for MB and CV, respectively. MB and CV kinetic and rate of adsorption well fitted by pseudo-second order equation both in single and binary systems and experimental results denote more and favorable adsorption of CV than respective value in single system. The pseudo-second-order rate constant k2 in binary system larger than single system.  相似文献   

8.
Ordered hexagonal arrangement MCM-41 mesoporous molecular sieves were synthesized by the traditional hydrothermal method, and Fe-loaded MCM-41 mesoporous molecular sieves (Fe/MCM-41) were prepared by the wet impregnation method. Their mesoporous structures were testified by X-ray diffraction (XRD) and the N2 physical adsorption technique. Carbon nanotubes (CNTs) were synthesized by the chemical vapor deposition (CVD) method via the pyrolysis of ethanol at atmospheric pressure using Fe/MCM-41 as a catalytic template. The effect of different reaction temperatures ranging from 600 to 800 °C on the formation of CNTs was investigated. The resulting carbon materials were characterized by various physicochemical techniques such as transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and Raman spectroscopy. The results show that multi-wall carbon nanotubes (MWCNTs) with an internal diameter of ca. 7.7 nm and an external diameter of ca. 16.9 nm were successfully obtained by the pyrolysis of ethanol at 800 °C utilizing Fe/MCM-41 as a catalytic template.  相似文献   

9.
In this work, we report the synthesis of nickel titanate nanoparticles loaded on nanomesoporous MCM-41 nanoparticles to determine the effect of MCM-41 nanoparticles on the photocatalytic activities of nickel titanate (NiTiO3) nanoparticles by using simple solid-state dispersion (SSD) method. Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and UV–Vis diffuse reflectance spectra (DRS) analysis were used to characterize the size and morphology of the obtained nanocomposite. The photocatalytic activity (PA) of the as-prepared NiTiO3 loaded on MCM-41 was evaluated by degradation of the methylene blue under irradiation of UV and visible light. The results showed that NiTiO3 loaded on nanosize MCM-41 has higher photocatalytic activity than that of NiTiO3 nanoparticles.  相似文献   

10.
《Ultrasonics sonochemistry》2014,21(6):1964-1968
Through an ultrasound assisted method, TiO2/WO3 nanoparticles were synthesized at room temperature. The XRD pattern of as-prepared TiO2/WO3 nanoparticles matches well with that of pure monoclinic WO3 and rutile TiO2 nanoparticles. TEM images show that the prepared TiO2/WO3 nanoparticles consist of mixed square and hexagonal shape particles about 8–12 nm in diameter. The photocatalytic activity of TiO2/WO3 nanoparticles was tested for the degradation of a wastewater containing methylene blue (MB) under visible light illumination. The TiO2/WO3 nanoparticles exhibits a higher degradation rate constant (6.72 × 10−4 s−1) than bare TiO2 nanoparticles (1.72 × 10−4 s−1) under similar experimental conditions.  相似文献   

11.
Using cetyltrimethyl ammonium bromide (CTAB) as the template and sodium silicate as the silicon source, the MCM-41 mesoporous molecular sieves with Eu incorporated in the framework were synthesized under microwave irradiation condition and the influence of the Si/Eu molar ratio on the crystalline structure, textural properties and the long-range ordering of the resulting sample was investigated by various physicochemical techniques such as X-ray diffraction (XRD), transmission electron microscope (TEM), diffuse reflectance ultraviolet-visible spectroscopy (UV-vis), thermal gravimetric-differential scanning calorimeter (TG-DSC) and N2 physical adsorption. The results of N2 adsorption and XRD reveal that the synthesized sample has the ordered hexagonal mesoporous structure. UV-vis spectra provide the strong evidences that most of europium ions were incorporated into the framework of the MCM-41 sample. The crystalline structure, textural properties and mesoporous ordering of the resultant mesoporous materials are related to the amount of europium incorporation. Small amount europium incorporated into the silica-based MCM-41 does not strongly modify the structure of mesoporous molecular sieve. An increase of the Eu content in sample led to reduction of the specific surface area and the deterioration of the long-range ordering.  相似文献   

12.
Removal of methylene blue (MB) via adsorption and photocatalysis using titanate nanotubes (TNTs) with different surface areas were investigated and compared to commercial titanium dioxide (TiO2) P25 Degussa nanoparticles. The TNTs with surface area ranging from 20 m2/g to 200 m2/g were synthesized via hydrothermal method with different reaction times. TEM imaging confirmed the tubular structure of TNT while XRD spectra indicated all TNTs exhibited anatase crystallinity. Batch adsorption rate showed linearity with surface properties of TNTs, where materials with higher surface area showed higher adsorption rate. The highest MB adsorption (70%) was achieved by TNT24 in 60 min whereas commercial TiO2 exhibited the lowest adsorption of only 10% after 240 min. Adsorption isotherm studies indicated that adsorption using TNT is better fitted into Langmuir adsorption isotherm than Freundlich isotherm model. Furthermore, TNT24 was able to perform up to 90% removal of MB within 120 min, demonstrating performance that is 2-fold better compared to commercial TiO2. The high surface area and surface Bronsted acidity are the main reasons for the improvement in MB removal performance exhibited by TNT24. The improvement in surface acidity enhanced the adsorption properties of all the nanotubes prepared in this study.  相似文献   

13.
This article reports the reduction of methylene blue (MB) by sulfide ions (S2−) in aqueous solution by a nanoAlMCM-41 catalyst. The results obtained showed that, under acidic conditions (pH=2) MB was reduced to the Leuco methylene blue (LMB) form by sulfide ions and by changing the pH between 2.0 and 7.0 a reduction of the MB dye to the MBH2+ form was observed. In alkaline media (pH=8), a reduction of methylene blue by sulfide ions to the MBH2+ form and demethylation of the dye was observed simultaneously. The demethylation of MB leads to a thionine dye product. Using nanoAlMCM-41 but with encapsulated CoS nanoparticles only causes demethylation of MB in aqueous solution.  相似文献   

14.
The applicability of ZnS:Ni nanoparticles loaded on activated carbon derived from apple tree wood (ZnS:Ni-NPs-ACATW) for the adsorption of Methylene Blue (MB) and Janus Green B (JGB) dyes in single system from water solution has been described. The synthesized adsorbent characterized and identified by UV–Vis, FE-SEM, EDX, TEM, FTIR and XRD. The influences of operation parameters including initial MB or JGB concentration (9.0–33.0 mg L−1), pH (4.0–10.0), extent of adsorbent (0.08–0.12 g) and sonication time (4.0–8.0 min) investigated and subsequently best operational condition optimized by central composite design (CCD) combined with response surface methodology (RSM) and desirability function (DF) using STATISTICA 10.0 software. At optimum conditions, maximum MB and JSB adsorption onto ZnS:Ni-NPs-ACATW, i.e. 99.57% ± 1.34 and 98.70% ± 2.01, respectively was achieved pH of 7.0, 0.11 g adsorbent, 14 and 28 mg L−1 of MB and JSB concentration respectively and 8 min sonication time. Experimental data were modelled by Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) isotherms. Langmuir isotherm and monolayer adsorption capacity of MB and JSB was found to be 21.79 and 28.01 mg g−1 respectively. The regression results strongly support more contribution of pseudo-second-order model for more accurate and repeatable representation of kinetic data. These results reveal that ZnS:Ni-NPs-ACATW could be useful as agents to efficiently remove dyes (JGB and MB) from contaminated water and can be very well recommended for wastewater remediation and control of environmental pollution.  相似文献   

15.
《Current Applied Physics》2010,10(3):967-970
The preparation of NiO and CoO nanoparticles was reported. The dot-like NiO and flower-like CoO nanoparticles were obtained using M2+-oleate (M = Ni, Co) as precursor via thermal decomposition method. Transmission electron microscopic (TEM) images monitored the growth of NiO and CoO nanoparticles. When the reaction complex including M2+-oleate (M = Ni, Co) precursor, oleic acid and 1-octadecene was heated to the refluxing temperature (320 °C), the formed NiO and CoO nanoparticles were needle-like and very small, indicating low growth speed. However, when the reaction complex was kept refluxing for 30 min, dot-like NiO and flower-like CoO nanoparticles were observed, suggesting the accelerated growth at this refluxing stage. The difference of the morphology of the resultant NiO and CoO nanoparticles resulted from the difference of their growth mode. Selected-area electron diffraction (SAED) patterns showed the face-centered cubic structures of NiO and CoO nanoparticles. The magnetic property of the nanoparticles was studied using vibrating sample magnetometer (VSM).  相似文献   

16.
Hexagonally ordered mesoporous silica materials, MCM-41 and SBA-15, have been synthesized and loaded with Ag nanoparticles, utilizing both chemical synthesis and ultra-short pulsed laser ablation in liquid. In laser ablation, a silver target, immersed in aqueous suspension of ordered mesoporous silica SBA-15, was irradiated by ultra-short laser pulses to generate silver nanoparticles. For comparison, samples of similar silver contents were prepared either by incorporating silver into the SBA-15 during a hydrothermal synthesis or by introducing silver in MCM-41 by template ion-exchange. Samples were characterized by XRD, N2 physisorption, TEM and UV–vis spectroscopy. All preparations contained significant amount of 5–50 nm size silver agglomerates on the outer surface of the silica particles. The laser ablation process did not cause significant destruction of the SBA-15 structure and metallic silver (Ag0) nanoparticles were mainly generated. It is demonstrated that by laser ablation in aqueous silica suspension smaller and more uniform metallic silver particles can be produced and loaded on the surface of the silica support than by synthesis procedures. Catalytic properties of the samples have been tested in the total oxidation of toluene. Because of its favorable Ag dispersity, the Ag/SBA-15 catalyst, generated by the laser ablation method, had better catalytic stability and, relative to its Ag load, higher activity than the conventional Ag/SBA-15 preparations.  相似文献   

17.
Fe3O4-graphene/ZnO@mesoporous-SiO2 (MGZ@SiO2) nanocomposites was synthesized via a simple one pot hydrothermal method. The as-obtained samples were investigated using various techniques, as follows: scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and specific surface area (BET) vibrating sample magnetometer (VSM), among others. The sonocatalytic activities of the catalysts were tested according to the oxidation for the removal of methylene blue (MB), methyl orange (MO), and rhodamine B (RhB) under ultrasonic irradiation. The optimal conditions including the irradiation time, pH, dye concentration, catalyst dosage, and ultrasonic intensity are 60 min, 11, 50 mg/L, 1.00 g/L, and 40 W/m2, respectively. The MGZ@SiO2 showed the higher enhanced sonocatalytic degradation from among the three dyes; furthermore, the sonocatalytic-degradation mechanism is discussed. This study shows that the MGZ@SiO2 can be applied as a novel-design catalyst for the removal of organic pollutants from aqueous solutions.  相似文献   

18.
A simple and facile route is developed for the preparation of mesoporous titanium nitride (TiN) microspheres with a large surface area and a highly porous structure. This method involves the preparation of an amorphous precursor via a solvothermal reaction and subsequent short-time nitridation process to mesoporous TiN. X-ray diffraction and X-ray photoelectron spectroscopy analyses confirm the composition of the resultant sample. The mesoporous structure of the as-prepared TiN sample has been studied by nitrogen adsorption/desorption measurement. The surface area obtained by the Brunauer–Emmett–Teller method is 50.6 m2 g−1 and the pore sizes are in the range of 2.0–4.0 nm. In addition, the obtained sample is evaluated as a new sorbent for Cd2+ removal. Experimental parameters such as solution pH, contact time and concentration of adsorbate are optimized. The maximum adsorption capacity for Cd2+ removal is found to be 12.40 mg g−1 and it is a potentially attractive adsorbent for Cd2+ removal from aqueous solution.  相似文献   

19.
Chromium doped zinc oxide nanoparticles (ZnO: Cr-NPs) was synthesized by ultrasonically assisted hydrothermal method and characterized by FE-SEM, XRD and TEM analysis. Subsequently, this composite ultrasonically assisted was deposited on activated carbon (ZnO: Cr-NPs-AC) and used for simultaneous ultrasound-assisted removal of three toxic organic dye namely of malachite green (MG), eosin yellow (EY) and Auramine O (AO). Dyes spectra overlap in mixture (major problem for simultaneous investigation) of this systems was extensively resolved by derivative spectrophotometric method. The magnitude of variables like initial dyes concentration, adsorbent mass and sonication time influence on dyes removal was optimized using small central composite design (CCD) combined with desirability function (DF) approach, while pH was studied by one-a-time approach. The maximized removal percentages at desirability of 0.9740 was set as follow: pH 6.0, 0.019 g ZnO: Cr-NPs-AC, 3.9 min sonication at 4.5, 4.8 and 4.7 mg L−1 of MG, EY and AO, respectively. Above optimized points lead to achievement of removal percentage of 98.36%, 97.24%, and 99.26% correspond to MG, EY and AO, respectively. ANOVA for each dyes based p-value less than (<0.0001) suggest highly efficiency of CCD model for prediction of data concern to simultaneous removal of these dyes within 95% confidence interval, while their F-value for MG, EY and AO is 935, 800.2, and 551.3, respectively, that confirm low participation of this them in signal. The value of multiple correlation coefficient R2, adjusted and predicted R2 for simultaneous removal of MG is 0.9982, 0.9972 and 0.9940, EY is 0.9979, 0.9967 and 0.9930 and for AO is 0.9970, 0.9952 and 0.9939. The adsorption rate well fitted by pseudo second-order and Langmuir model via high, economic and profitable adsorption capacity of 214.0, 189.7 and 211.6 mg g−1 for MG, EY and AO, respectively.  相似文献   

20.
In the present study, a porous clay-like support with unique characteristics was used for the synthesis and immobilization of ZnO nanostructures to be used as sonocatalyst for the sonocatalytic decolorization of methylene blue (MB) dye in the aqueous phase. As a result, the sonocatalytic activity of ZnO–biosilica nanocomposite (77.8%) was higher than that of pure ZnO nanostructures (53.6%). Increasing the initial pH from 3 to 10 led to increasing the color removal from 41.8% to 88.2%, respectively. Increasing the sonocatalyst dosage from 0.5 to 2.5 g/L resulted in increasing the color removal, while further increase up to 3 g/L caused an obvious drop in the color removal. The sonocatalysis of MB dye over ZnO–biosilica nanocomposite was temperature-dependent. The presence of methanol produced the most adverse effect on the sonocatalysis of MB dye. The addition of chloride and carbonate ions had a negligible effect on the sonocatalysis, while the addition of persulfate ion led to increasing the color removal from 77.8% to 99.4% during 90 min. The reusability test exhibited a 15% drop in the color removal (%) within three consecutive experimental runs. A mineralization efficiency of 63.2% was obtained within 4 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号