首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 137 毫秒
1.
N-doped ZnO films were produced using N2 as N source by metal-organic chemical vapor deposition (MOCVD) system which has been improved with radio-frequency (RF)-assisted equipments. The data of secondary ion mass spectroscopy (SIMS) indicate that the concentration of N in N-doped ZnO films is around 5 × 1020 cm−3, implying that sufficient incorporation of N into ZnO can be obtained by RF-assisted equipment. On this basis, the structural, optical and electrical properties of Al-N codoped ZnO films were studied. Then, the effect of RF power on crystal quality, surface morphologies, optical properties was analyzed using X-ray diffraction, atomic force microscopy and photo-luminescence methods. The results illustrate that the RF plasma is the key factor for the improvement of crystal quality. Then the observation of A0X recombination associated with NO acceptor in low-temperature PL spectrum proved that some N atoms have occupied the positions of O atoms in ZnO films. Hall measurements shown that p-type ZnO film deposited on quartz glasses was obtained when RF power was 150 W for the Al-N codoped ZnO films, while the resistivity of N-doped ZnO films was rather high. Compared with the Al-doped ZnO film, the obviously increased resistivity of codoped films indicates that the formation of NO acceptors compensate some donors in ZnO films effectively.  相似文献   

2.
Nickel films of different thickness ranging from 15 nm to 350 nm were deposited on glass substrates, at different substrate temperatures (313-600 K) under UHV condition. The nano-structure of the films was obtained, using X-ray diffraction (XRD) and atomic force microscopy (AFM). The nano-strain in these films was obtained using the Warren-Averbach method. Their optical properties were measured by spectrophotometry in the spectral range of 190-2500 nm. Kramers-Kronig method was used for the analysis of the reflectivity curves. The absorption peaks of Ni thin films at ∼1.4 eV (transition between the bands near W and K symmetry points) and ∼5.0 eV (transition from L2 to L1 upper) are observed, with an additional bump at about 2 eV. The over-layer thickness was calculated to be less than 3.0 nm, using the Transfer Matrix method. The changes in optical data are related to different phenomena, such as different crystallographic orientations of the grains in these polycrystalline films (film texture), nano-strain, and film surface roughness.  相似文献   

3.
A laser-induced forward transfer technique has been applied for the maskless patterning of amorphous V2O5 thin films. A sheet beam of a frequency doubled (SHG) Q-switched Nd:YAG laser was irradiated on a transparent glass substrate (donor), the rear surface of which was pre-coated with a vacuum-deposited V2O5 180 nm thick film was either in direct contact with a second glass substrate (receiver) or a 0.14 mm air-gap was maintained between the donor film and the receiving substrate. Clear, regular stripe pattern of the laser-induced transferred film was obtained on the receiver. The pattern was characterized using X-ray diffraction (XRD), optical absorption spectroscopy, scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDAX), atomic force microscopy (AFM), etc.  相似文献   

4.
As-deposited antimony sulfide thin films prepared by chemical bath deposition were treated with nitrogen AC plasma and thermal annealing in nitrogen atmosphere. The as-deposited, plasma treated, and thermally annealed antimony sulfide thin films have been characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy, scanning electron microscopy, atomic force microscopy, UV-vis spectroscopy, and electrical measurements. The results have shown that post-deposition treatments modify the crystalline structure, the morphology, and the optoelectronic properties of Sb2S3 thin films. X-ray diffraction studies showed that the crystallinity of the films was improved in both cases. Atomic force microscopy studies showed that the change in the film morphology depends on the post-deposition treatment used. Optical emission spectroscopy (OES) analysis revealed the plasma etching on the surface of the film, this fact was corroborated by the energy dispersive X-ray spectroscopy analysis. The optical band gap of the films (Eg) decreased after post-deposition treatments (from 2.36 to 1.75 eV) due to the improvement in the grain sizes. The electrical resistivity of the Sb2S3 thin films decreased from 108 to 106 Ω-cm after plasma treatments.  相似文献   

5.
Without intentionally heating the substrates, indium tin oxide (ITO) thin films of thicknesses from 72 nm to 447 nm were prepared on polyethylene terephthalate (PET) substrates by DC reactively magnetron sputtering with pre-deposition substrate surfaces plasma cleaning. The dependence of structural, electrical, and optical properties on the films thickness were systematically investigated. It was found that the crystal grain size increases, while the transmittance, the resistivity, and the sheet resistance decreases as the film thickness was increasing. The thickest film (∼447 nm) was found of the lowest sheet resistance 12.6 Ω/square, and its average optical transmittance (400-800 nm) and the 550 nm transmittance was 85.2% and 90.4%, respectively. The results indicate clearly that dependence of the structural, electrical, and optical properties of the films on the film thickness reflected the improvement of the film crystallinity with the film thickness.  相似文献   

6.
Single-phase Ba(Mg1/3Ta2/3)O3 thin films were prepared by radiofrequency plasma beam assisted pulsed laser deposition (RF-PLD) starting from a bulk ceramic target synthesized by solid state reaction. Atomic force microscopy, X-ray diffraction and spectroscopic ellipsometry were used for morphological, structural and optical characterization of the BMT thin films. The X-ray diffraction spectra show that the films exhibit a polycrystalline cubic structure. From spectroscopic ellipsometry analysis, the refractive index varies with the thin films deposition parameters. By using the transmission spectra and assuming a direct band to band transition a band gap value of ≈4.72 eV has been obtained.  相似文献   

7.
The structural and optical properties of ZnO films deposited on Si substrate following rapid thermal annealing (RTA) have been investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), and photoluminescence (PL) measurements. After RTA treatment, the XRD spectra have shown an effective relaxation of the residual compressive stress, an increase of the intensity and narrowing of the full-width at half-maximum (FWHM) of the (0 0 2) diffraction peak of the as-grown ZnO film. AFM images show roughening of the film surface due to increase of grain size after RTA. The PL spectrum reveals a significant improvement in the UV luminescence of ZnO films following RTA at 800 °C for 1 min.  相似文献   

8.
High-quality thick GaN films without cracks were achieved by using a new nozzle structure in the reactor grown by the hydride vapor phase epitaxy on sapphire substrates. Optical contrast microscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray double diffraction (XRD) and cathodoluminescence (CL) were carried out to reveal the surface, crystal and optical properties of the GaN epilayer. It was found that the nozzle structure in the reactor has a large effect on the growth rate, surface flat, crystal quality, and the uniformity of the growth. Compared with the old one, the new nozzle structure (denoted as multi-layers nozzle) can improve dramatically the properties of thick GaN. Mirror, colorless and flat GaN thick film was obtained and its (0 0 0 2) FWHM results were reduced from 1000 to 300 arcsec when the new nozzle was used. AFM result revealed a step flow growth mode for GaN layer with the new nozzle. Room-temperature CL spectra on the GaN films showed a strong near-band-edge peak for the new nozzle, but there is only weak emitting peak for the old nozzle. New nozzle structure can improve the uniform of flow field near the surface of substrates compared with the old one, which leads to the improvement of properties of GaN thick film by hydride vapor phase epitaxy (HVPE).  相似文献   

9.
Pure and Cu-doped ZnO (ZnO:Cu) thin films were deposited on glass substrates using radio frequency (RF) reactive magnetron sputtering. The effect of substrate temperature on the crystallization behavior and optical properties of the ZnO:Cu films have been studied. The crystal structures, surface morphology and optical properties of the films were systematically investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and a fluorescence spectrophotometer, respectively. The results indicated that ZnO films showed a stronger preferred orientation toward the c-axis and a more uniform grain size after Cu-doping. As for ZnO:Cu films, the full width at half maxima (FWHM) of (0 0 2) diffraction peaks decreased first and then increased, reaching a minimum of about 0.42° at 350 °C and the compressive stress of ZnO:Cu decreased gradually with the increase of substrate temperature. The photoluminescence (PL) spectra measured at room temperature revealed two blue and two green emissions. Intense blue-green luminescence was obtained from the sample deposited at higher substrate temperature. Finally, we discussed the influence of annealing temperature on the structural and optical properties of ZnO:Cu films. The quality of ZnO:Cu film was markedly improved and the intensity of blue peak (∼485 nm) and green peak (∼527 nm) increased noticeably after annealing. The origin of these emissions was discussed.  相似文献   

10.
Titanium dioxide (TiO2) films were fabricated by cosputtering titanium (Ti) target and SiO2 or Si slice with ion-beam-sputtering deposition (IBSD) technique and were postannealed at 450 °C for 6 h. The variations of oxygen bonding, which included high-binding-energy oxygen (HBO), bridging oxygen (BO), low-binding-energy oxygen (LBO), and three chemical states of titanium (Ti4+, Ti3+ and Ti2+) were analyzed by X-ray photoelectron spectroscopy (XPS). The enhancement of HBO and reduction of BO in O 1s spectra as functions of SiO2 or Si amount in cosputtered film imply the formation of Si-O-Ti linkage. Corresponding increase of Ti3+ in Ti 2p spectra further confirmed the property modification of the cosputtered film resulting from the variation of the chemical bonding. An observed correlation between the chemical structure and optical properties, refractive index and extinction coefficient, of the SiO2 or Si cosputtered films demonstrated that the change of chemical bonding in the film results in the modification of optical properties. Furthermore, it was found that the optical properties of the cosputtered films were strongly depended on the cosputtering targets. In case of the Si cosputtered films both the refractive indices and extinction coefficients were reduced after postannealing, however, the opposite trend was observed in SiO2 cosputtered films.  相似文献   

11.
We report results obtained from optical absorption studies carried out on amorphous silicon thin films deposited by plasma-enhanced chemical vapour deposition (PECVD) from silane plasma. The influence of the film thickness was studied on the two series of samples deposited from undiluted silane and under moderate hydrogen dilution of silane. Spectral refractive indices and absorption coefficients were determined from transmittance spectra. The spectral absorption coefficients were used to determine the Tauc optical band-gap energies Eg, the B factors of the Tauc plots, the iso-energy values E04 (energy at which the absorption coefficient is equal to 104 cm−1). The results were correlated with volume fractions of the amorphous phase and voids and with the film thickness.  相似文献   

12.
A novel and effective process to fabricate high quality fluoride thin films was presented. Aluminum fluoride films deposited by a conventional thermal evaporation with an ion-assisted deposition (IAD) using SF6 as a working gas at around room temperature were investigated. In this study, the optimal voltage and current, 50 V and 0.25 A, were found according to the optical properties of the films: high refractive index (1.489 at 193 nm), low optical absorption and extinction coefficient (<10−4 at 193 nm) in the UV range. The physical properties of the film are high packing density and amorphous without columnar structure. It was proved that using SF6 working gas in IAD process is a good choice and significantly improves the quality of AlF3 films.  相似文献   

13.
Multilayer films containing anionic iron phthalocyanine tetrasulfonate (FePcTsNa4) and cationic poly(diallydimethyl ammonium chloride) were prepared using electrostatic self-assembled layer-by-layer technique. The growth of the film was monitored by ultraviolet-visible absorption spectroscopy, and the morphology of the film was characterized by atomic force microscopy. Polarized visible spectra showed that macrocycles of FePcTsNa4 in the film presented a flat orientation relative to the plane of the solid substrates. The third-order nonlinear optical properties of the film were studied by using Z-scan technique with laser duration of 21 ps at the wavelength of 532 nm. The FePcTsNa4/PDDA film exhibited strong self-focusing effect with n2 value of 4.13 × 10−15 m2/W, which is 4 orders larger than that of FePcTsNa4 aqueous solution.  相似文献   

14.
The surface characteristics of titanium oxide films evaluated by gray level co-occurrence matrices (GLCMs) and entropy are demonstrated experimentally. A PC-based measurement system was set up to detect the interference fringe of optical coating surface as captured by a Fizeau interferometer. Titanium oxide films were prepared by an electron-beam gun evaporation method. The proposed measuring system was used to evaluate the surface flatness of titanium oxide films coated on glass substrates. The variation of entropy in titanium oxide films before and after film deposition was found to be related to the root-mean-square (rms) surface roughness. Surface characteristics of thin films were fast measured by our proposed method and the test results were verified by atomic force microscopy (AFM) and scanning electrical microscopy (SEM).  相似文献   

15.
In this study, SrAl2O4:Eu2+,Dy3+ thin film phosphors were deposited on Si (1 0 0) substrates using the pulsed laser deposition (PLD) technique. The films were deposited at different substrate temperatures in the range of 40-700 °C. The structure, morphology and topography of the films were determined by using X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). Photoluminescence (PL) data was collected in air at room temperature using a 325 nm He-Cd laser as an excitation source. The PL spectra of all the films were characterized by green phosphorescent photoluminescence at ∼530 nm. This emission was attributed to 4f65d1→4f7 transition of Eu2+. The highest PL intensity was observed from the films deposited at a substrate temperature of 400 °C. The effects of varying substrate temperature on the PL intensity were discussed.  相似文献   

16.
In this paper, zinc oxide (ZnO) and cerium-doped zinc oxide (ZnO:Ce) films were deposited by reactive chemical pulverization spray pyrolysis technique using zinc and cerium chlorides as precursors. The effects of Ce concentration on the structural and optical properties of ZnO thin films were investigated in detail. These films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL) measurements. All deposited ZnO layers at the temperature 450 °C are polycrystalline and indicate highly c-axis oriented structure. The dimension of crystallites depends on incorporation of Ce atoms into the ZnO films. The photoluminescence spectra of the films have been studied as a function of the deposition parameters such as doping concentrations and post grows annealing. Photoluminescence spectra were measured at the temperature range from 13 K to 320 K.  相似文献   

17.
ZnO thin films were deposited by thermal evaporation of a ZnO powder. The as-deposited films are dark brown, rich zinc and present a low transmittance. Then, these films were annealed in air atmosphere at different temperatures between 100 and 400 °C. Their microstructure and composition were studied using XRD and RBS measurements respectively. By increasing the temperature, it was found that film oxidation starts at 250 °C. XRD peaks related to ZnO appear and peaks related to Zn decrease. At 300 °C, zinc was totally oxidised and the films became totally transparent. The electrical conductivity measurement that were carried out in function of the annealing temperature showed the transition from highly conductive Zn thin film to a lower conductive ZnO thin film. The optical gap (Eg) was deduced from the UV-vis transmittance, and its variation was linked to the formation of ZnO.  相似文献   

18.
Transparent conductive Al-doped zinc oxide (AZO) films with highly (0 0 2)-preferred orientation were deposited on quartz substrates at room temperature by RF magnetron sputtering. Optimization of deposition parameters was based on RF power, Ar pressure in the vacuum chamber, and distance between the target and substrate. The structural, electrical, and optical properties of the AZO thin films were investigated by X-ray diffraction, Hall measurement, and optical transmission spectroscopy. The 250 nm thickness AZO films with an electrical resistivity as low as 4.62 × 10−4 Ω cm and an average optical transmission of 93.7% in the visible range were obtained at RF power of 300 W, Ar flow rate of 30 sccm, and target distance of 7 cm. The optical bandgap depends on the deposition condition, and was in the range of 3.75-3.86 eV. These results make the possibility for light emitting diodes (LEDs) and solar cells with AZO films as transparent electrodes, especially using lift-off process to achieve the transparent electrode pattern transfer.  相似文献   

19.
Diamond-like carbon (DLC) films were prepared on silicon substrates by liquid phase electrodeposition from a mixture of acetonitrile and deionized water. The deposition voltage was clearly reduced owing to the presence of deionized water in the electrolyte by changing the basic properties (dielectric constant and dipole moment) of the electrolyte. Raman spectra reveal that the ratio of sp3/sp2 in the DLC films is related to the concentration of acetonitrile. The surface roughness and grain morphology determined by atomic force microscopy are also influenced by the concentration of the acetonitrile. The UMT-2 universal micro-tribometer was used to test the friction properties of the DLC films obtained from electrolytes with different concentration. The results convey that the DLC film prepared from the electrolyte containing 10 vol.% acetonitrile has the better surface morphology and friction behavior comparing with the other. In addition the growth mechanism of the film was also discussed.  相似文献   

20.
ZnO/Si thin films were prepared by rf magnetron sputtering method and some of the samples were treated by rapid thermal annealing (RTA) process at different temperatures ranging from 400 to 800 °C. The effects of RTA treatment on the structural properties were studied by using X-ray diffraction and atomic force microscopy while optical properties were studied by the photoluminescence measurements. It is observed that the ZnO film annealed at 600 °C reveals the strongest UV emission intensity and narrowest full width at half maximum among the temperature ranges studied. The enhanced UV emission from the film annealed at 600 °C is attributed to the improved crystalline quality of ZnO film due to the effective relaxation of residual compressive stress and achieving maximum grain size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号