首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
《Composite Interfaces》2013,20(8):701-714
To investigate the influence of the grafting density and the molecular structure of block copolymers on the interfacial assembly behavior and interfacial shear strength, macromolecular coupling agents, hydroxyl-terminated poly(n-butyl acrylate-b-styrene) (HO-P(BA-b-S)) were synthesized by atom transfer radical polymerization, and then chemically anchored on the glass fiber surfaces to form a well-defined monolayer. The phase separation and 'hemispherical' domain morphologies of diblock copolymer brushes at the polystyrene/glass fiber interface were observed. The interfacial assembly morphology differs with changes in the grafting density of diblock copolymers. When the grafting density is greatest, the highest height difference of the hemispherical domain and the largest surface roughness are achieved, as well as the best interface shear strength. It was also found that the copolymer brush with a PBA block of the polymerization degree (Xn) about 77 is the optimal option for the interfacial adhesion of PS/GF composites. Thus, the grafting density and molecular structure of diblock copolymers determines the interfacial assembly behavior of copolymer brushes, and therefore the interfacial shear strength.  相似文献   

2.
Polymeric self-consistent field theory is used to investigate microstructures and interphase properties of diblock copolymers grafted onto solid surfaces in a homopolymer melt. The calculations show that the grafted diblock copolymers can self-assemble into hemispherical microstructures at low grafting densities of the diblock copolymers. The morphology transforms into hemicylinder-like and sandwich-like lamellar microstructures with an increase in the chain-grafting density. The effective thickness of the grafted block layer and the interphase width between the homopolymer melt and the grafted copolymers strongly depend on the physicochemical parameters of the system, such as the composition of the grafted copolymer, the chemical incompatibility between the different components, the length ratio of grafted copolymer to homopolymer, and the grafting density of the diblock copolymers. In addition, the above computational results of microphase-separated structures and interphase properties are qualitatively compared with our previous experimental observations. The comparison indicates that our theoretical results not only reproduce the general feature of the experimental observations, but also elucidate the internal structural information and complement the findings in the region of high grafting densities of diblock copolymers.  相似文献   

3.
We use molecular dynamics simulations to investigate centipede-like polymers with stiff charged side chains, end-grafted to a planar wall. The effect of the grafting density and the Bjerrum length on the conformational behaviour of the brush is examined in detail. In addition, we make a comparison of centipede-like polyelectrolyte (CPE) brushes with neutral centipede-like polymer (NCP) and linear polyelectrolyte (LPE) brushes. At weak electrostatic interaction, the main chains of the CPE chains adopt a strongly stretched conformation, and the monomer density profiles of side chains exhibit a clear oscillatory behaviour. With increasing Bjerrum length, the CPE brush undergoes a collapse transition. Compared to the CPE brushes, the counterion condensation effect is stronger for the LPE brushes, regardless of whether the electrostatic interaction is weak or strong and of whether the grafting density is low or high. Additionally, it is shown that the architecture of the grafted chains makes a weak contribution to the counterion condensation at strong electrostatic interaction. We also find that the electrostatic repulsion between charged side chains can enhance the stiffness of the main chains and thus limit the range of movement of the free-end monomers.  相似文献   

4.
Molecular dynamics simulations were used to investigate the electric field-induced migration of nanoparticles in a nanochannel grafted with a polymer brush. The distribution of nanoparticles, brush monomer density and migration velocity are addressed at different electric field strengths and grafting densities. The increase of the grafting density leads to a decrease of the effective radius of the nanochannel. At high grafting density, the distribution of nanoparticles is shifted significantly towards the center of the channel. Enhancing the electric field leads to a very slight change of brush monomer density. The migration velocity increases with the electric field rapidly at weak electric fields, while a slow increase is observed at strong electric fields. Additionally, it is found that the migration velocity of nanoparticles exhibits a nonlinear dependence on the grafting density.  相似文献   

5.
Small-angle neutron scattering (SANS) has been employed for the analysis of conformations of poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g -PEG) molecular bottle brushes in aqueous solutions. The degree of polymerisation of the PEG chains was systematically varied in order to unravel dependence of the conformational properties of the bottle brushes on the molecular weight of the grafted chains. The grafting density was kept constant and high enough to ensure strong overlap of the PEG chains. The scattering spectra were fitted on the basis of the model of an effective worm-like chain with the account of average radial distribution and local fluctuations of the PEG density in the bottle brush. The results of the fits indicate that molecular brushes retain weakly bent configuration on the length scale of the order of (or larger than) the brush thickness. This finding is in agreement with earlier simulation and recent theoretical results.  相似文献   

6.
We predict the elastic properties of mixed amphiphilic monolayers in the swollen state within the blob model using scaling arguments. First the elastic moduli and the spontaneous curvature of a bimodal brush are determined as a function of the composition and the relative chain length. We obtain simple and useful scaling functions which interpolate between the elastic moduli of a pure short-chain brush and a pure long-chain brush. By using the analogy between block copolymer interfaces and polymeric brushes, the effect of mixing on self-assembled diblock copolymer monolayers is investigated in the swollen state. We calculate various interfacial properties, such as the equilibrium surface coverage, interface curvature, and the mixing free energy as a function of the composition. In general, we find a nonlinear dependence on the composition, which deviates from the simple linear averaging of the properties of pure components. Our results are used to discuss a recent experiment on the effect of amphiphilic block copolymers on the efficiency of microemulsions. Received 29 December 2000 and Received in final form 19 March 2001  相似文献   

7.
We investigate polyelectrolyte brushes using both scaling arguments and molecular dynamics simulations. As a main result, we find a novel collapsed brush phase. In this phase, the height of the brush results from a competition between steric repulsion between ions and monomers and an attractive force due to electrostatic correlations. As a result, the monomer density inside the brush is independent of the grafting density and the polymerization index. For small ionic and monomer radii (or for large Bjerrum length) the brush undergoes a first-order phase transition from the osmotic into the collapsed state. Received 26 September 2000  相似文献   

8.
Thin layers of polystyrene were grown from surface-grafted nitroxide initiators via controlled “living” free radical polymerization. The “reactive” Langmuir-Blodgett deposition method allowed an effective control of the initiator layer density leading to PS brushes with different and high grafting density and stretching. The influence of the grafting density on the layer structure was studied. Comparison with theoretical predictions for monodispersed brushes in bad solvent was discussed. The thickness was found to vary linearly with molecular weight and the density dependence was shown using wetting measurements. Special features of controlled radical nitroxide polymerization from a surface were discussed. A direct comparison of the molecular weight and polydispersity between surface and bulk polymers was made by de-grafting the brushes into a toluene/HF solution. Finally, some evidence of a “surface Fischer” effect was shown from re-initiated layers. Received 20 December 2001  相似文献   

9.
We investigate the effect of counterion fluctuations in a single polyelectrolyte brush in the absence of added salt by systematically expanding the counterion free energy about Poisson-Boltzmann mean-field theory. We find that for strongly charged brushes, there is a collapse regime in which the brush height decreases with increasing charge on the polyelectrolyte chains. The transition to this collapsed regime is similar to the liquid-gas transition, which has a first-order line terminating at a critical point. We find that, for monovalent counterions, the transition is discontinuous in theta solvent, while for multivalent counterions, the transition is generally continuous. For collapsed brushes, the brush height is not independent of grafting density as it is for osmotic brushes, but scales linear with it.Received: 26 November 2003, Published online: 11 May 2004PACS: 61.25.Hq Macromolecular and polymer solutions; polymer melts; swelling - 61.20.Qg Structure of associated liquids: electrolytes, molten salts, etc.  相似文献   

10.
王铮  李宝会 《中国物理 B》2016,25(1):16402-016402
Block copolymers are a class of soft matter that self-assemble to form ordered morphologies on the scale of nanometers, making them ideal materials for various applications. These applications directly depend on the shape and size of the self-assembled morphologies, and hence, a high degree of control over the self-assembly is desired. Grafting block copolymer chains onto a substrate to form copolymer brushes is a versatile method to fabricate functional surfaces. Such surfaces demonstrate a response to their environment, i.e., they change their surface topography in response to different external conditions. Furthermore, such surfaces may possess nanoscale patterns, which are important for some applications; however, such patterns may not form with spun-cast films under the same condition. In this review, we summarize the recent progress of the self-assembly of block copolymers grafted onto a flat substrate. We mainly concentrate on the self-assembled morphologies of end-grafted AB diblock copolymers, junction point-grafted AB diblock copolymers(i.e.,Y-shaped brushes), and end-grafted ABA triblock copolymers. Special emphasis is placed on theoretical and simulation progress.  相似文献   

11.
Planar brushes formed by end-grafted semiflexible polyampholyte chains, each chain containing an equal number of positively and negatively charged monomers, are studied using molecular dynamics simulations. Keeping the length of the chains fixed, the dependences of the average brush thickness and equilibrium statistics of the brush conformations on the grafting density and the salt concentration are obtained with various sequences of charged monomers. When similarly charged monomers of the chains are arranged in longer blocks, the average brush thickness is smaller and the dependence of brush properties on the grafting density and the salt concentration is stronger. With such long blocks of similarly charged monomers, the anchored chains bond to each other in the vicinity of the grafting surface at low grafting densities and buckle toward the grafting surface at high grafting densities.  相似文献   

12.
The ultrasonic degradation of poly (styrene-co-methyl methacrylate) (SMMA), poly (styrene-co-ethyl methacrylate) (SEMA) and poly (styrene-co-butyl methacrylate) (SBMA) copolymers of different compositions was studied. The copolymers were synthesized and NMR spectroscopy was used to determine the composition, and the glass transition temperatures were determined by DSC. The reactivity ratios were determined by the Kelen–Tudos method and it indicated that the copolymers were random. The effect of solvent, temperature and copolymer composition on the ultrasonic degradation rate of these copolymers was investigated. A model based on continuous distribution kinetics was employed to study the degradation kinetics. The degradation rate coefficients of the copolymers decreased with an increase in the styrene content in the copolymer. At any particular copolymer composition the rate of degradation follows the order: SBMA > SEMA > SMMA. Thermogravimetric analysis (TGA) of the copolymers was carried in order to assess their thermal stability. The same order of degradation was observed for the thermal degradation of the copolymers as that observed for ultrasonic degradation.  相似文献   

13.
Three kinds of comb-like amphiphilic copolymers based on styrene-maleic anhydride copolymer (SMA) backbone and long fatty alcohol grafts were synthesized by esterification of SMA with octanol, tetradecanol and octadecanol, respectively. SMA and the esters were used as surface modifiers to blend with high density polyethylene (HDPE). The surface composition of the binary blends has been determined by Attenuated Total Reflection Fourier Transform infra-red (ATR-FT-IR) spectroscopy. It was found that grafting of alcohols onto SMA can promote the enrichment of the modifiers on the surface of the blending film, and that the enrichment effect enhances when using shorter fatty alcohols. The data of contact angle measurements and surface tension of the blend film show that the addition of SMA esters to HDPE can improve the hydrophilicity of the HDPE surface.  相似文献   

14.
In this paper, polymer brushes are studied via molecular-dynamics simulations at very high grafting densities, where the crossover between the brush regime and the polymer-crystal regime is taking place. This crossover is directly observed with the structure factor and pair-correlation function. With increasing grafting density, this crystallization is progressing from the core layer of the brush towards the surface layer. The same process is analyzed using the lateral fluctuations of the monomers as a signature of their diminishing mobility. Additionally, bond forces and the chain excess free energy indicate a transition from the brush regime to the overstretched regime, which is in agreement with predictions of a modified self-consistent field theory.  相似文献   

15.
The compositional relaxation in random copolymer systems on a macroscopic scale is considered in theory. A set of diffusion equations is derived that describes the motion of chains of different composition and then converted into coupled equations for statistical moments of the compositional distribution. Several ways to solve the closure problem for these equations are discussed. The simplest is the situation when the shape of the transient compositional distribution can be predicted a priori, for example, a bimodal distribution is kept during interdiffusion of two copolymers that are not very close in composition. For a general case, it is shown that the cumulant-neglect closure based on the truncation of high-order cumulants is an effective method to get an approximate solution in terms of the time-dependent local mean composition and its dispersion. This method is applied to non-homogeneous compatible polymer systems, such as a random copolymer AB of a composition varying in space, a bilayer of Bernoullian copolymers AB of different composition, and a bilayer of homopolymers A and B, in which an autocatalytic polymer-analogous reaction A → B takes place, with possibility of the neighbor group effect. It is found that the interdiffusion can lead to a substantial broadening of the local compositional distribution, which, in turn, accelerates the system dynamics and promotes chemical reactions.  相似文献   

16.
The stretching of brushes of long polymers grafted to a planar surface is investigated by Monte Carlo simulations in the limit of very high grafting densities, as achieved in recent experiments. The monomer density profiles are shown to deviate considerably from the parabolic limiting form predicted by self-consistent field theory. A rapid transition is observed from parabolic to fully stretched polymers, characterized by a dramatic change in the end-monomer height distribution and by a clear crossover in the slope of the brush height versus scaled grafting density.  相似文献   

17.
The thermo-responsive behavior of polymer films consisting of novel linear triblock copolymers of poly(n-butyl methacrylate)-poly(methyl methacrylate)-poly(2-fluoroethyl methacrylate) (PnBuMA-PMMA-P2FEMA) are reported using differential scanning calorimetry (DSC), atomic forcing microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contacting angle (CA) measurements. The surface morphology, wettability and chemical structure of thin films of these triblock copolymers on silicon wafers as a function of temperature have been investigated. It has been shown that the wettability of the films is thermally switchable. Detailed structural analysis shows that thermo-responsive surface composition changes are produced. The underlying mechanism of the thermoresponsive behavior is discussed.  相似文献   

18.
We report the use of thermo-responsive polymers in the synthesis of Co and γ-Fe2O3 nanoparticles using a two-step method involving thermal decomposition of the organometallic complexes in the presence of oleic acid and then followed by ligand-exchange process with thermo-responsive polymer. Among different thermo-responsive polymers investigated, it was found that the polymer based on poly(N-isopropylacrylamide) with a co-monomer component of acrylic acid and acrylamide can be used in the ligand-exchange to coat Co and γ-Fe2O3 nanoparticles, respectively. The nanoparticles are found to be water-soluble at temperatures below coil-to-globule phase transition of the coating polymer.  相似文献   

19.
The transformation from A(1)B diblock copolymer to A(1)BA(2) triblock copolymers varying in molecular asymmetry is investigated as the A(2) end block is progressively grown via chemical synthesis. Dynamic rheological measurements show that the order-disorder transition (ODT) temperatures of two copolymer series differing in composition and molecular weight decrease when the A(2) block is short relative to the A(1) block, and then increase as the length of the A(2) block is increased further. The resultant ODT minimum, predicted by mean-field theory, is attributed to mixing between long B and short A(2) blocks.  相似文献   

20.
Amphiphilic block copolymers in solution spontaneously self-assemble when the solvent quality for one block is selectively decreased. We demonstrate that, for supersaturation ratio changes [d(S)/dt] over 10(5) per second from equilibrium, nanoparticles are obtained with a formation mechanism and size dependent on the jumping rate and magnitude. The threshold rate for homogeneous precipitation is determined by the induction time of a particle, equivalent to the diffusion limited fusion of copolymer chains to form a corona of overlapping soluble brushes. Via determination of the induction time with a novel confined impinging jets mixer and use of a scaling relation, the interfacial free energy of a block copolymer nanoparticle was measured for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号