首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 351 毫秒
1.
为了满足激光诱导等离子体分析系统(LIPS)对分光系统的分辨率,光谱范围,体积等多方面要求。本文研制了一台中阶梯光栅光谱仪,该光谱仪能同时获得所有谱段范围内的光谱信息,令LIPS系统可实现快速在线实时分析。并且,该光谱仪采用可调节延迟时间的ICCD作为后端探测器,令整个系统可根据实际实验情况选择最优延迟时间接收光谱,提高了整个系统的信噪比。最后,搭建了一套激光诱导等离子体分析系统,对研制的中阶梯光栅光谱仪在系统中的可用性进行验证。通过对合金样品测试,整个系统的分辨率达0.02 nm,光谱范围覆盖190~600 nm。并且研制的LIPS系统光谱重复性较好,特征元素波长提取误差不超过0.01 nm,可较准确的对样品成分进行分析。  相似文献   

2.
为了解决传统成像光谱仪难以实现光谱和图像信息实时获取的问题,设计一款可见/近红外宽谱段视频型成像光谱仪系统。系统利用多狭缝分光成像技术,将目标光谱图像进行区域划分,代替传统的推帚型成像光谱仪,实现光谱维的大视场成像。采用低色散光学玻璃和双胶合透镜实现宽谱段光学系统的像差校正。前置望远物镜系统采用复杂的双高斯结构,实现小畸变设计和不同视场狭缝处能量的均匀分布。为了同时获取高空间分辨率的实时视频监控和高光谱分辨率,利用分光棱镜将前置望远物镜的像分为两路,一路直接由高分辨率全色相机接收,另一路进入分光系统由灰度相机接收。采用三块棱镜作为分光元件,通过优化材料组合和实际光线控制,获得了萤石-熔石英-萤石理想棱镜组合,实现了光路同轴性和良好色散线性度。设计结果为光学系统的光谱范围为400~1000 nm,F数为3.5,前置望远物镜奈奎斯特频率处设计调制传递函数(MTF)大于0.5,畸变小于0.1%,像面照度均匀性高于98%。整个系统奈奎斯特频率处设计MTF大于0.44,平均光谱分辨率为10 nm。  相似文献   

3.
调整光谱仪的光谱分辨率,可使光谱仪在满足不同目标测量需求的同时,减少数据采集、处理和存储的时间,提高仪器的整体性能。为克服传统傅里叶变换光谱仪的光谱分辨率固定的缺点,提出了一种分辨率可调的空间调制傅里叶变换光谱仪。介绍了该新型光谱仪及其干涉仪的工作原理,利用光线追迹的方法推导了光程差和横向剪切量的计算公式,并分析了新型干涉仪的光程等效模型。在此基础上,分析了光谱分辨率的调节原理。结果表明,该光谱分辨率可调的新型空间调制傅里叶变换光谱仪克服了传统光谱仪分辨率固定、稳定性差等缺点,具有分辨率可调、高稳定性、结构灵活和易于装调等特点。该研究内容为分辨率可调的干涉光谱仪的设计提供了理论基础,扩展了傅里叶变换光谱仪的实用范围。  相似文献   

4.
高分辨率Czerny-Turner光谱仪光学系统设计   总被引:1,自引:0,他引:1  
为了克服光栅光谱仪分辨率低、像差较大、体积大的缺点,根据光谱仪工作原理和几何光学像差理论,设计了一种光谱范围为350~450nm的Czerny-Turner光谱仪光学系统.计算了光学系统各光学元件的特征参量和系统结构参量.运用光学设计软件Zemax对系统进行光线追迹与优化设计,并对设计结果进行分析.理论和实验结果均表明,该系统在350~450nm光谱范围内分辨率小于0.1nm,系统体积约为105×105×20mm3,整个光学系统具有结构简单、体积小、分辨率高、稳定性好等优点.  相似文献   

5.
为克服分立式便携拉曼光谱仪光通量低的缺点,设计了一种集拉曼探头光路与分光系统于一体的光学系统。探头光路采用大数值孔径的非球面透镜实现样品的有效激发和信号的高效收集,通过胶合透镜组缩小会聚光路尺寸、消除轴向色差。分光系统基于交叉非对称Czerny-Turner结构,为获得期望的光谱分辨率和光谱范围,建立了分光系统光谱分辨率及光谱范围与交叉非对称Czerny-Turner结构参数的关系。由测得的汞灯谱图可知,分光系统的光谱分辨率优于6 cm~(-1)(0.37 nm),光谱范围为790~950 nm(200~2000 cm~(-1))。将设计的光学系统对CCL4进行测试,实验结果表明在相同积分时间内由这种整体式的光学系统检测到的CCL4光谱谱峰强度是用商业探头通过光纤连接分光系统检测到的近3倍,验证了光学系统设计的合理性。  相似文献   

6.
近红外微型光谱仪光学系统设计与模拟   总被引:3,自引:0,他引:3  
基于光谱仪基本工作原理和光学设计理论,以系统微型化、且能满足一定光谱范围和分辨率要求为具体设计目标,提出了基于平面衍射光栅分光的交叉式C-T结构的近红外微型光谱仪光学系统结构方案。采用ZEMAX软件对近红外微型光谱仪的分光系统、成像系统进行了优化设计与模拟分析。最终设计与模拟分析结果表明,该光学系统光谱范围为900~1 700 nm,分辨率<10 nm,谱面展宽为12.74 mm,F数为8.128 388,系统体积为51.26 mm×41.81 mm×22 mm。  相似文献   

7.
棱镜-光栅-棱镜光谱成像系统的光学设计   总被引:2,自引:1,他引:1  
设计了一种基于棱镜-光栅-棱镜(Prism-Grating-Prism,PGP)分光器件的新型成像光谱仪.论述了此成像光谱仪的工作原理和结构形式,包括PGP、准直物镜和成像物镜的设计要求.PGP元件中采用体积相位全息透射光栅,可以获得高的衍射效率,并且能与棱镜较好地胶合.给出了此成像光谱仪的设计结果,其光谱范围为400~800 nm,像元光谱分辨率约1.6 nm,系统长度为85 mm.  相似文献   

8.
短波红外棱镜-光栅-棱镜成像光谱仪光学系统设计   总被引:2,自引:2,他引:0  
提出了一种基于棱镜-光栅-棱镜分光器件的短波红外成像光谱仪光学系统,该系统由离轴三反射式望远物镜、准直镜、棱镜-光栅-棱镜和会聚镜组成,光谱覆盖950~2 500 nm,空间视场达到22.5°.在实现宽视场、宽波段设计的同时,优化设计了棱镜-光栅-棱镜分光器件的各个参量.通过偏斜会聚镜光轴和棱镜-光栅-棱镜光轴在光谱维...  相似文献   

9.
为了对PGP成像光谱仪所获得的光谱数据进行定量化分析,需对PGP成像光谱仪进行光谱定标,以获得各光谱通道的中心波长、光谱分辨率及成像光谱仪的光谱弯曲等光谱特性信息。采用单色准直光法设计了一套全视场自动化的光谱定标系统,系统中引入球面镜为待测的成像光谱仪光谱定标提供准直光,通过可自动控制的折转镜改变定标入射光线的入射角,以此实现待测成像光谱仪空间维不同视场的自动化光谱定标。运用该定标系统对PGP成像光谱仪进行光谱定标实验,得到该成像光谱仪的光谱性能参数,并结合定标系统的结构特点,对实验的结果进行了精度分析。实验分析结果表明该系统对PGP成像光谱仪的中心波长定标精度达到0.1 nm,光谱分辨率定标精度达到1.3%。该研究设计的全视场自动化光谱定标系统具有结构新颖紧凑、通用性较强、光谱定标精度较高等特点,且由于自动化的控制,避免了由于人为参与定标过程所带来的额外误差。该系统可用于实现PGP成像光谱仪及其他同类型成像光谱仪的光谱定标。  相似文献   

10.
传统的罗兰圆光谱仪和Czerny-Turner型光谱仪常常采用刻线密的光栅和大的成像焦距,来提高其光谱分辨率,其结果导致成本高和仪器体积庞大。为了克服这一缺点,提出了一种中阶梯光栅和低色散棱镜相结合的光谱仪光学系统设计方法。具体分析了中阶梯光栅的基本原理和使用方法,给出设计基于中阶梯光栅的光谱仪基本步骤,并且实际设计了基于中阶梯光栅的高分辨光谱仪光学系统,焦距为400 mm,可在全谱工作波段180~800 nm成二维光谱。Zemax光学设计软件对光学系统进行光线追迹结果表明,该系统环围能量在单个CCD像素(24 mm×24 mm)内达到50%~70%以上,200 nm处分辨率可达0.00675 nm,完全满足设计指标要求。  相似文献   

11.
一种光栅型成像光谱仪光学系统设计   总被引:3,自引:2,他引:1       下载免费PDF全文
 成像光谱仪是一种“图谱合一”的光学遥感仪器。从光栅型成像光谱仪的使用要求出发,利用Zemax软件设计了一种光栅型成像光谱仪光学系统。其中,前置望远物镜采用反射式结构,传统的卡塞格林结构在主次镜均采用非球面时校正像差的能力依然有限,设计时采用改进后的卡塞格林结构对像差进行校正,最终设计的望远镜头传函在50 lp/mm处达到0.5,场曲控制在0.078以内,且不存在畸变。针对光谱成像系统通常采用的基于平面光栅的Czerny-Turner结构由于像差校正能力有限、成像质量较差不能满足仪器的使用要求。采用基于凸面光栅的光谱成像系统,该系统结构紧凑、可实现宽波段内像差的同时校正。最终设计的光谱成像系统光谱分辨率<5 nm,MTF在50 lp/mm时升至0.75。将前置望远物镜与光谱成像系统根据匹配原则进行组合优化后光栅型成像光谱仪系统点列图RMS半径随波长的变化均小于0.2,波长的80%的能量集中在Φ6 μm范围内,波长各视场在特征频率50 lp/mm处的光学传递函数均大于0.5。整个光学系统具有结构简单、像差校正能力强、结构尺寸较小的优点。  相似文献   

12.
为满足航天应用中仪器小型和轻量化、大视场的观测要求,通过分析现有Offner成像光谱仪,给出了一种简单的采用凸面光栅设计成像光谱仪的方法。并据此方法设计了一应用于400 km高度,波段范围为0.4~1 μm,焦距为720 mm,F数为5,全视场大小为4.3°的分视场成像光谱仪系统。分视场采用光纤将望远系统的细长像面连接到光谱仪的三个不同狭缝而实现。三狭缝光谱面共用一个像元数为1 024×1 024,像元大小18 μm×18 μm的CCD探测器。通过ZEMAX软件优化和公差分析后,系统在28 lp·mm-1处MTF优于0.62,光谱分辨率优于5 nm,地面分辨率小于10 m,能很好的满足大视场应用要求,该光学系统刈幅宽度相当于国内已研制成功的同类最好仪器的三倍。  相似文献   

13.
高光谱成像用于中医舌诊舌苔信息提取   总被引:1,自引:0,他引:1  
舌苔信息的提取对于中医舌诊客观化起着非常重要的作用,目前中医舌苔信息提取多基于图像处理技术,用数码相机拍摄舌体RGB彩色图像,然而,现有的方法在信息量方面还不能满足中医临床的需要,为了探究舌体更多信息,本研究将高光谱成像技术用于中医舌诊舌苔信息的提取中,以获得在全波段内舌体信息进而为中医舌诊诊断方式以及客观化提供一种新途径。首先运用高光谱采集系统采集来检者舌体在371.200 0~992.956 0 nm之间的343个波长的高光谱信息,并且记录来检者的中医舌诊的临床诊断结果,然后对采集到的16例来检者的高光谱图像进行感兴趣区域提取,即将舌体信息与背景信息进行分离,进而对提取的感兴趣区域舌质与舌苔光谱信息和图像信息进行处理。由实验结果分析发现,16例来检者舌苔和舌质部分光谱差异最大波段位于525~600 nm之间,对382.108 0~963.668 0 nm之间均匀提取9个波长处的舌体单一波长的二维图像信息并进行图像绘制,通过对比来检者舌体实际情况发现在527.548 0 nm处能够很好的真实反映舌体表面舌苔附着情况,实验结果表明,高光谱技术在中医舌苔信息提取方面具有一定的可行性,能够为中医舌诊舌苔分离以及舌苔信息提取提供一种快速、简便的检测手段。  相似文献   

14.
宽谱高分辨平场凹面全息光栅光谱仪设计   总被引:1,自引:0,他引:1  
武建芬  赵雷  陈永彦  周超  王泰升  王宇 《光学学报》2012,32(4):409002-87
为了获得宽谱、高分辨的平场凹面全息光栅,将全息凹面光栅理论、遗传算法、衍射级次空间共用和同时消像差思想融合在一起,提出设计宽谱、高分辨平场凹面全息光栅的方法,给出了实际设计步骤。通过Zemax软件光线追迹仿真具体实例,给出了200~800nm波段的点列图变化曲线[均方根(RMS)约为11μm],以10μm×1mm狭缝入射,其光照度光谱图显示光谱分辨率在200~400nm波段为0.25nm,在400~800nm波段为0.5nm。该方法可以用于设计小型化、实用化的宽谱和高分辨平场凹面全息光栅光谱仪光学系统。  相似文献   

15.
宽波段高分辨率小型紫外成像光谱仪光学系统研究   总被引:1,自引:0,他引:1  
结合小型紫外光谱仪器设计原理对紫外成像光谱仪进行了研究。以离轴抛物镜为望远镜,超环面光栅为成像光谱系统设计了系统方案;该光学系统的优化设计就是对超环面光栅的参数设计。分析了光栅的光程函数和像差方程,总结了单超环面光栅结构的完善聚焦条件和完善成像条件;这两种条件无法在代数计算下得到完善代数解,限制了光谱仪的工作波段和视场,引入遗传算法解决了这个问题。以一工作波段为200~280 nm的日盲紫外成像光谱仪为例对设计理论进行验证,根据优化理论计算了初始结构最优解并进行光线追迹模拟,成功得到了F数为5.7,焦距为102 mm,全视场全波段调制传递函数值在奈奎斯特频率(20 lp·mm-1)下大于0.65的高分辨率成像光谱仪光学系统。设计结果表明这种光学系统设计理论适用于小型宽波段高分辨率紫外成像光谱仪。  相似文献   

16.
Wu ZZ  Du XW  Li CY  Ke GY  Wang QP 《光谱学与光谱分析》2011,31(10):2647-2650
提出利用成像光谱仪研究空心阴极元素灯光谱空间分布的检测方法。自制了基于Offner成像系统的推扫式凸面光栅成像光谱仪,覆盖波长范围400~1 000 nm,视场角22°,光谱分辨率2~3 nm;利用该光谱仪第一次得到得到Hg元素灯光谱的空间分布,给出了不同波长下的空间图像和不同空间位置的光谱分布信息,具有较高的空间分辨率和光谱分辨率;并同时获取了不同工作电流条件下的元素灯高光谱数据,对比分析了处于不同工作状态下光谱空间分布的差异。这为空心阴极元素灯光谱的空间分布等性能研究提供了一个很好的工具,相关方法也可以用来研究其他类型的光源。  相似文献   

17.
可见近红外波段无人机载成像光谱仪设计   总被引:1,自引:0,他引:1  
为了满足地物成像光谱分析的需要,设计了同轴安装、体积小、重量轻的适用于无人机载的棱镜-光栅-棱镜型可见近红外成像光谱仪.通过角放大率选择、光焦度分配、相对孔径计算设计了视场较大的前置物镜;通过光栅方程求解、体相位全息光栅布拉格条件约束、棱镜折射定律设计了光谱系统的初始结构;通过工作光谱上下限出射角与探测器光谱维宽度的关系确定了成像物镜的焦距;通过出射光角度明确了出射光谱的非线性.设计的无人机载成像光谱仪工作光谱范围为400~1 000nm,视场角为40°,全工作波段在空间截止频率20.8lp/mm处的传递函数值均大于0.67,光谱分辨率小于3nm.装调了无人机载成像光谱仪对室外绿化树木进行光谱推扫成像实验,实现了树叶的多光谱成像.该成像光谱仪能够有效实现光谱成像,性能良好.  相似文献   

18.
针对传统光谱仪体积大、成本高、检测速度慢、需样品前处理等不足,提出了利用数字微镜面阵(DMD)实现光谱谱面分割分时选通的近红外光谱仪光学系统.首先,对比传统光路介绍单探测器微型光谱仪系统测量原理|然后结合DMD特性提出光路方案,根据几何光学原理进行初步光学元件选型和光路结构设计,利用ZEMAX光学软件对光路进行仿真,确定结构参数|最后,搭建实验平台,进行光路测试.实验结果表明:该系统光路尺寸为70 mm×130 mm,测量波段为(900~1 500 nm),分辨率可达19 nm|在能量损失较小的情况下,减小狭缝尺寸可提高光学分辨率,狭缝的极限尺寸为200 μm|减小狭缝子午面高度可减小谱面内弯曲现象.本系统基本满足近红外分光,实现单点探测器光谱测量的要求.  相似文献   

19.
程宏昌  盛亮  石峰  王芬芬  冯刘 《应用光学》2007,28(3):305-308
为了能及时测量自制紫外像增强器的光谱响应特性,设计了一套简便的测量紫外像增强器光谱响应的系统。该系统由专用光源室、光栅光谱仪、直流稳压电源、皮安电流计4部分构成。用光栅光谱仪配套软件直接读出光源每个波长对应的辐射功率;用皮安电流计直接测量出各个波长的光照射光阴极时光阴极产生的光电流,然后求出这2个比值并用Microsoft Excel 2003进行处理,得到光电流与波长变化的曲线,即相对光谱响应曲线。从曲线可以看出,该紫外像增强器的光谱响应范围为200nm~340nm,峰值响应在270nm附近,表明该紫外像增强器具有日盲特性。测试结果表明:系统不确定度<10%。  相似文献   

20.
提出了一种新型的基于可编程MEMS(micro-electro-mechanical systems)微镜的微型傅里叶变换红外光谱仪。该光谱仪采用可编程MEMS微镜和倾斜反射镜替代了传统傅里叶变换光谱仪的动镜系统。理论分析了该光谱仪的工作原理,并进行了计算机仿真,验证了该方法的可行性。结果表明,该光谱系统能够准确地还原光谱信息,其光谱分辨率在近红外区域小于5 nm,波长准确性约1 nm,系统理论上的信号采集周期约50 ms。适合于利用阿达玛变换提高信噪比,可应用于微量物质检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号