首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider the new agegraphic dark energy model with the help of the quantum corrections to the entropy-area relation in the setup of loop quantum gravity. Employing this new form of dark energy so called entropy-corrected new agegraphic dark energy (ECNADE), we investigate the model of interacting dark energy and derive its equation of state (EoS). We study the correspondence between the K-essence, tachyon and dilaton scalar fields with the interacting (ECNADE)in the non-flat FRW universe. Moreover, we reconstruct the corresponding scalar potentials which describe the dynamics of the scalar field.  相似文献   

2.
Motivated by recent works (Saridakis in Phys. Lett. B 660:138, 2008; Sheykhi in Int. J. Mod. Phys. D 19(3):305, 2010), we investigate the new agegraphic model of dark energy in the framework of RS II braneworld. We also include the case of variable gravitational constant G in our model. Moreover, we reconstruct the potential and the dynamics of the quintessence, tachyon, K-essence and dilaton scalar field models according to the evolutionary behavior of the new agegraphic dark energy model in RS II braneworld cosmology including varying G.  相似文献   

3.
In this work, we have considered the entropy-corrected new agegraphic dark energy (ECNADE) model in Ho?ava-Lifshitz gravity in FRW universe. We have discussed the correspondence between ECNADE and other dark energy models such as DBI-essence, Yang-Mills dark energy, Chameleon field, Non-linear electrodynamics field and hessence dark energy in the context of Ho?ava-Lifshitz gravity and reconstructed the potentials and the dynamics of the scalar field theory which describe the ECNADE.  相似文献   

4.
5.
In this paper we consider a correspondence between the interacting new agegraphic dark energy density and tachyon energy density in non-flat universe. Then we reconstruct the potential and the dynamics of the tachyon field which describe tachyon cosmology.  相似文献   

6.
In this work, we have tried to find out similarities between various available models of scalar field dark energies (e.g., quintessence, k-essence, tachyon, phantom, quintom, dilatonic dark energy, etc). We have defined an equivalence relation from elementary set theory between scalar field models of dark energies and used fundamental ideas from linear algebra to set up our model. Consequently, we have obtained mutually disjoint subsets of scalar field dark energies with similar properties and discussed our observation.  相似文献   

7.
8.
Motivated by a recent work of one of us (Sheykhi in Phys Rev D 81: 023525, 2010), we extend it by using quantum (or entropy) corrected new agegraphic dark energy in the Brans–Dicke cosmology. The correction terms are motivated from the loop quantum gravity which is one of the competitive theories of quantum gravity. Taking the non-flat background spacetime along with the conformal age of the universe as the length scale, we derive the dynamical equation of state of dark energy and the deceleration parameter. An important consequence of this study is the phantom divide scenario with entropy-corrected new agegraphic dark energy. Moreover, we assume a system of dark matter, radiation and dark energy, while the later interacts only with dark matter. We obtain some essential expressions related with dark energy dynamics. The cosmic coincidence problem is also resolved in our model.  相似文献   

9.
This work is motivated by the work of Kim et al. (Mod. Phys. Lett. A 23:3049, 2008), which considered the equation of state parameter for the new agegraphic dark energy based on generalized uncertainty principle coexisting with dark matter without interaction. In this work, we have considered the same dark energy interacting with dark matter in emergent, intermediate and logamediate scenarios of the universe. Also, we have investigated the statefinder, kerk and lerk parameters in all three scenarios under this interaction. The energy density and pressure for the new agegraphic dark energy based on generalized uncertainty principle have been calculated and their behaviors have been investigated. The evolution of the equation of state parameter has been analyzed in the interacting and non-interacting situations in all the three scenarios. The graphical analysis shows that the dark energy behaves like quintessence era for logamediate expansion and phantom era for emergent and intermediate expansions of the universe.  相似文献   

10.
We investigate alternative candidates to dark energy (DE) that can explain the current state of the Universe in the framework of the generalized teleparallel theory of gravity f(T), where T denotes the torsion scalar. To achieve this, we carry out a series of reconstructions taking into account the ordinary and entropy-corrected versions of the holographic and new agegraphic DE models. These models are used as alternatives to DE in the literature in order to describe the current state of our Universe. It is remarked that the proposed models indicate behavior akin to phantom or quintessence models. Furthermore, we also generate the parameters of the equation of state associated with entropy-corrected models and we observe a phase transition between the quintessence state and phantom state as it is shown by the recent observational data. We also investigate the stability of these models and we create the $\{r-s\}$ trajectories and compare with the ΛCDM limit. The behavior of certain physical parameters such as the speed of sound and the Statefinder diagnostic pair $\{r-s\}$ is compatible with the current observational data.  相似文献   

11.
We investigate the tachyon scalar filed model of dark energy in the framework of Gauss-Bonnet cosmology. We consider a spatially non-flat universe containing interacting tachyon dark energy with pressureless dark matter. We obtain the equation of state and deceleration parameters. We also reconstruct the potential and the dynamics for the tachyon scalar field model, which describe accelerated expansion of the universe.  相似文献   

12.
In this work we investigate the polytropic gas dark energy model in the non flat universe. We first calculate the evolution of EoS parameter of the model as well as the cosmological evolution of Hubble parameter in the context of polytropic gas dark energy model. Then we reconstruct the dynamics and the potential of the tachyon and K-essence scalar field models according to the evolutionary behavior of polytropic gas model.  相似文献   

13.
Among various scenarios to explain the acceleration of the universe expansion, the holographic dark energy (HDE) model has got a lot of enthusiasm recently. In the derivation of holographic energy density, the area relation of the black hole entropy plays a crucial role. Indeed, the power-law corrections to entropy appear in dealing with the entanglement of quantum fields in and out the horizon. Inspired by the power-law corrected entropy, we propose the so-called “power-law entropy-corrected holographic dark energy” (PLECHDE) in this Letter. We investigate the cosmological implications of this model and calculate some relevant cosmological parameters and their evolution. We also briefly study the so-called “power-law entropy-corrected agegraphic dark energy” (PLECADE).  相似文献   

14.
The present work considers interaction between DBI-essence and other candidates of dark energies like modified Chaplygin gas, hessence, tachyonic field, and new agegraphic dark energy. The potentials of the fields have been reconstructed under interaction and their evolutions have been viewed against cosmic time t and scalar field φ. Equation of state parameters have also been obtained. The nature of potentials and the equation of state parameters of the dark energies have been found graphically in presence of interaction (both small and large interaction).  相似文献   

15.
In this work, we study a new kind of dark energy (DE), which is named as "Yang-Mills condensate" (YMC). We study the stability and wde-w'de analysis of YMC DE model. Then we correspond it with quintessence, k-essence, tachyon, phantom, dilaton, DBI-essence and hessence scalar field models of DE in FRW spacetime to reconstruct potentials as well as the dynamics for these scalar fields for describing the acceleration of the universe. We also analyze the models in graphically to interpret the nature of the scalar fields and corresponding potentials.  相似文献   

16.
Following a previous work (García-Aspeitia in Gen Rel Grav 43:315–329, 2011), we further study the behavior of a real scalar field in a hidden brane in a configuration of two branes embedded in a five dimensional bulk. We find an expression for the equation of state for this scalar field in the visible brane in terms of the fields of the hidden one. Additionally, we investigated the perturbations produced by this scalar field in the visible brane with the aim to study their dynamical properties. Our results show that if the kinetic energy of the scalar field dominates during the early universe the perturbed scalar field could mimic the observed dynamics for the dark matter in the standard paradigm. Thus, the scalar field dark matter hypothesis in the context of braneworld theory could be an interesting alternative to the nature of dark matter in the Universe.  相似文献   

17.
In this paper, we investigate the new agegraphic dark energy model in the framework of Brans-Dicke theory, which is a natural extension of the Einstein's general relativity. In this framework the form of the new agegraphic dark energy density takes as ρq =3n2 φ(t) η-2, where η is the conformalage of the universe and φ(t) is the Brans-Dicke scalar field representing the inverse of the time-variable Newton's constant. We derive the equation of state of the new agegraphic dark energy and the deceleration parameter of the universe in the Brans-Dicke theory. It is very interesting to find that in the Brans-Dicke theory the agegraphic dark energy realizes quintom-like behavior,i.e., its equation of state crosses the phantom divide w=-1 duringthe evolution. We also compare the situation of the agegraphic darkenergy model in the Brans-Dicke theory with that in the Einstein'stheory. In addition, we discuss the new agegraphic dark energy modelwith interaction in the framework of the Brans-Dicke theory.  相似文献   

18.
Holographic dark energy (HDE), presents a dynamical view of dark energy which is consistent with the observational data and has a solid theoretical background. Its definition follows from the entropy-area relation S(A), where S and A are entropy and area respectively. In the framework of loop quantum gravity, a modified definition of HDE called “entropy-corrected holographic dark energy” (ECHDE) has been proposed recently to explain dark energy with the help of quantum corrections to the entropy-area relation. Using this new definition, we establish a correspondence between modified variable Chaplygin gas, new modified Chaplygin gas and the viscous generalized Chaplygin gas with the entropy corrected holographic dark energy and reconstruct the corresponding scalar potentials which describe the dynamics of the scalar field.  相似文献   

19.
Considering the power-law corrections to the black hole entropy, which appear in dealing with the entanglement of quantum fields inside and outside the horizon, the holographic energy density is modified accordingly. In this paper we study the power-law entropy-corrected holographic dark energy in the framework of Brans-Dicke theory. We investigate the cosmological implications of this model in detail. We also perform the study for the new agegraphic dark energy model and calculate some relevant cosmological parameters and their evolution. As a result we find that this model can provide the present cosmic acceleration and even the equation of state parameter of this model can cross the phantom line w D =−1 provided the model parameters are chosen suitably.  相似文献   

20.
We assume generalized ghost Pilgrim dark energy(GGPDE) model in the presence of cold dark matter in flat FRW universe.With suitable choice of interaction term between GGPDE and cold dark matter,we investigate the nature of equation of state parameter for GGPDE.Also,we investigate the natures of dynamical scalar field models(such as quintessence,tachyon,k-essence,and dilaton dark energy) and concerned potentials through the correspondence phenomenon between GGPDE and these models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号