首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   3篇
物理学   6篇
  2018年   1篇
  2013年   2篇
  2010年   2篇
  2008年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
We constrain cosmological parameters using only Hubble parameter data and quantify the impact of future Hubble parameter measurements on parameter estimation for the most typical dark energy models. We first constrain cosmological parameters using 52 current Hubble parameter data including the Hubble constant measurement from the Hubble Space Telescope. Then we simulate the baryon acoustic oscillation signals from WFIRST(Wide-Field Infrared Survey Telescope) covering the redshift range of z ∈ [0.5, 2] and the redshift drift data from E-ELT(European Extremely Large Telescope) in the redshift range of z ∈ [2, 5]. It is shown that solely using the current Hubble parameter data could give fairly good constraints on cosmological parameters. Compared to the current Hubble parameter data, with the WFIRST observation the H(z) constraints on dark energy would be improved slightly, while with the E-ELT observation the H(z) constraints on dark energy is enormously improved.  相似文献   
2.
李云鹤  张敬飞  张鑫 《中国物理 B》2013,22(3):39501-039501
The initial condition Ωde(zini)=n2(1+zini)-2/4 at zini=2000 widely used to solve the differential equation of the density of the new agegraphic dark energy (NADE) Ωde, makes the NADE model be a single-parameter dark-energy cosmological model. However, we find that this initial condition is only applicable in a flat universe with only dark energy and pressureless matter. In fact, in order to obtain more information from current observational data, such as the cosmic microwave background (CMB) and the baryon acoustic oscillations (BAO), we need to consider the contribution of radiation. For this situation, the initial condition mentioned above becomes invalid. To overcome this shortage, we investigate the evolutions of dark energy in the matter-dominated and the radiation-dominated epochs, and obtain a new initial condition Ωde(zini)=n2(1+zini)-2(1+√F(zini)2/4 at zini=2000, where F(z)≡Ωr0(1+z)/[Ωm0r0(1+z)] with Ωr0 and Ωm0 being the current density parameters of radiation and pressureless matter, respectively. This revised initial condition is applicable for the differential equation of Ωde obtained in the standard Friedmann-Robertson-Walker (FRW) universe with dark energy, pressureless matter, radiation, and even spatial curvature, and can still keep the NADE model being a single-parameter model. With the revised initial condition and the observational data of type Ia supernova (SNIa), CMB, and BAO, we finally constrain the NADE model. The results show that the single free parameter n of the NADE model can be constrained tightly.  相似文献   
3.
We apply the statefinder diagnostic to the extended holographic Ricci dark energy (ERDE) model without and with interaction to study their behaviors. We plot the trajectories of various parameters for different cases. It is shown that the non-interacting model does not reach the LCDM point {1, 0 } and the interacting one is favored, because the interaction makes the evolution of the statefinder pair r, s quite different.  相似文献   
4.
5.
In the 5-year WMAP data analysis, a new parametrization form for dark energy equation-of-state was used, and it has been shown that the equation-of-state, w(z), crosses the cosmological-constant boundary w = -1. Based on this observation, in this paper, we investigate the reconstruction of quintom dark energy model. As a single-real-sealarfield model of dark energy, the generalized ghost condensate model provides us with a successful mechanism for realizing the quintom-like behavior. Therefore, we reconstruct this scalar-field quintom dark energy model from the WMAP 5-year observational results. As a comparison, we also discuss the quintom reconstruction based on other specific dark energy ansatzs, such as the CPL parametrization and the holographic dark energy scenarios.  相似文献   
6.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号